利用神经网络对理工科学生留存率进行建模

R. Alkhasawneh, R. Hobson
{"title":"利用神经网络对理工科学生留存率进行建模","authors":"R. Alkhasawneh, R. Hobson","doi":"10.1109/EDUCON.2011.5773209","DOIUrl":null,"url":null,"abstract":"Attracting more students into science and engineering disciplines concerned many researchers for decades. Literature used traditional statistical methods and qualitative techniques to identify factors that affect student retention up most and predict their persistence. In this paper we developed two neural network models using a feed-forward backpropagation network to predict retention for students in science and engineering fields. The first model is used to predict incoming freshmen retention and identify correlated pre-college factors. The second model is to classify freshmen groups into three classes: at-risk, intermediate, and advanced students. With total of 338 samples used, 70.1% of students classified correctly.","PeriodicalId":146973,"journal":{"name":"2011 IEEE Global Engineering Education Conference (EDUCON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Modeling student retention in science and engineering disciplines using neural networks\",\"authors\":\"R. Alkhasawneh, R. Hobson\",\"doi\":\"10.1109/EDUCON.2011.5773209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attracting more students into science and engineering disciplines concerned many researchers for decades. Literature used traditional statistical methods and qualitative techniques to identify factors that affect student retention up most and predict their persistence. In this paper we developed two neural network models using a feed-forward backpropagation network to predict retention for students in science and engineering fields. The first model is used to predict incoming freshmen retention and identify correlated pre-college factors. The second model is to classify freshmen groups into three classes: at-risk, intermediate, and advanced students. With total of 338 samples used, 70.1% of students classified correctly.\",\"PeriodicalId\":146973,\"journal\":{\"name\":\"2011 IEEE Global Engineering Education Conference (EDUCON)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Global Engineering Education Conference (EDUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDUCON.2011.5773209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Global Engineering Education Conference (EDUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDUCON.2011.5773209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

几十年来,吸引更多的学生进入理工科领域一直是许多研究人员关注的问题。文献使用传统的统计方法和定性技术来确定影响学生保留率的因素,并预测他们的持久性。在本文中,我们建立了两个神经网络模型,使用前馈反向传播网络来预测理工科学生的保留率。第一个模型用于预测新生保留率并识别相关的大学入学前因素。第二种模式是将新生群体分为三个等级:高危学生、中级学生和高级学生。总共使用了338个样本,70.1%的学生正确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling student retention in science and engineering disciplines using neural networks
Attracting more students into science and engineering disciplines concerned many researchers for decades. Literature used traditional statistical methods and qualitative techniques to identify factors that affect student retention up most and predict their persistence. In this paper we developed two neural network models using a feed-forward backpropagation network to predict retention for students in science and engineering fields. The first model is used to predict incoming freshmen retention and identify correlated pre-college factors. The second model is to classify freshmen groups into three classes: at-risk, intermediate, and advanced students. With total of 338 samples used, 70.1% of students classified correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信