探索信息通信技术之间的关系:使用KL散度和分层聚类的可扩展计算方法

Chia-jung Tsui, Ping Wang, K. Fleischmann, Douglas W. Oard, A. Sayeed
{"title":"探索信息通信技术之间的关系:使用KL散度和分层聚类的可扩展计算方法","authors":"Chia-jung Tsui, Ping Wang, K. Fleischmann, Douglas W. Oard, A. Sayeed","doi":"10.1109/HICSS.2010.203","DOIUrl":null,"url":null,"abstract":"Different information and communication technologies (ICTs) are related in complex ways and, accordingly, their diffusion trajectories are related, too. How can the relationships among multiple ICTs be described and analyzed in a scalable way? In this study, we offer a scalable methodology, based on computational analysis of discourse, to examine the relationships among ICTs. Specifically, we employed Kullback-Leibler (KL) divergence to compare the semantic similarity of forty-seven ICTs discussed in the trade magazine InformationWeek over a decade. Using hierarchical clustering, we have found that the similarity of the technologies can be mapped in a hierarchy and similar technologies demonstrated similar discourses. The results establish the validity of our approach and demonstrate its scalability and richness. This analytical approach not only enables diffusion researchers to undertake multi-innovation, multi-source, and multi-period studies, but also helps practitioners effectively adopt and efficiently use new ICTs in their organizations.","PeriodicalId":328811,"journal":{"name":"2010 43rd Hawaii International Conference on System Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploring the Relationships among ICTs: A Scalable Computational Approach Using KL Divergence and Hierarchical Clustering\",\"authors\":\"Chia-jung Tsui, Ping Wang, K. Fleischmann, Douglas W. Oard, A. Sayeed\",\"doi\":\"10.1109/HICSS.2010.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different information and communication technologies (ICTs) are related in complex ways and, accordingly, their diffusion trajectories are related, too. How can the relationships among multiple ICTs be described and analyzed in a scalable way? In this study, we offer a scalable methodology, based on computational analysis of discourse, to examine the relationships among ICTs. Specifically, we employed Kullback-Leibler (KL) divergence to compare the semantic similarity of forty-seven ICTs discussed in the trade magazine InformationWeek over a decade. Using hierarchical clustering, we have found that the similarity of the technologies can be mapped in a hierarchy and similar technologies demonstrated similar discourses. The results establish the validity of our approach and demonstrate its scalability and richness. This analytical approach not only enables diffusion researchers to undertake multi-innovation, multi-source, and multi-period studies, but also helps practitioners effectively adopt and efficiently use new ICTs in their organizations.\",\"PeriodicalId\":328811,\"journal\":{\"name\":\"2010 43rd Hawaii International Conference on System Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 43rd Hawaii International Conference on System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2010.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 43rd Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2010.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

不同的信息和通信技术以复杂的方式相互关联,因此,它们的扩散轨迹也相互关联。如何以可扩展的方式描述和分析多种信息通信技术之间的关系?在这项研究中,我们提供了一种可扩展的方法,基于话语的计算分析,以检查信息通信技术之间的关系。具体来说,我们使用Kullback-Leibler (KL)分歧来比较贸易杂志InformationWeek在过去十年中讨论的47种信息通信技术的语义相似性。使用层次聚类,我们发现技术的相似性可以映射到层次结构中,相似的技术展示了相似的话语。结果证明了该方法的有效性,并证明了其可扩展性和丰富性。这种分析方法不仅使扩散研究人员能够进行多创新、多来源和多时期的研究,而且还有助于从业者在其组织中有效地采用和高效地使用新的信息通信技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Relationships among ICTs: A Scalable Computational Approach Using KL Divergence and Hierarchical Clustering
Different information and communication technologies (ICTs) are related in complex ways and, accordingly, their diffusion trajectories are related, too. How can the relationships among multiple ICTs be described and analyzed in a scalable way? In this study, we offer a scalable methodology, based on computational analysis of discourse, to examine the relationships among ICTs. Specifically, we employed Kullback-Leibler (KL) divergence to compare the semantic similarity of forty-seven ICTs discussed in the trade magazine InformationWeek over a decade. Using hierarchical clustering, we have found that the similarity of the technologies can be mapped in a hierarchy and similar technologies demonstrated similar discourses. The results establish the validity of our approach and demonstrate its scalability and richness. This analytical approach not only enables diffusion researchers to undertake multi-innovation, multi-source, and multi-period studies, but also helps practitioners effectively adopt and efficiently use new ICTs in their organizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信