比较深度学习的方法对帕金森脑疾病的核磁共振成像进行分类

Waeisul Bismi, Hani Harafani
{"title":"比较深度学习的方法对帕金森脑疾病的核磁共振成像进行分类","authors":"Waeisul Bismi, Hani Harafani","doi":"10.22441/incomtech.v12i3.15068","DOIUrl":null,"url":null,"abstract":"Penyakit Parkinson merupakan gangguan neurodegenerative yang bersifat progresif dan relative umum pada system saraf pusat yang menyebabkan kesulitan dalam bergerak. Biasanya penyakit ini sering terjadi pada individu berusia lebih dari 60 tahun dipengaruhi oleh factor genetic dan lingkungan. Deteksi dini pada penyakit Parkinson dapat mencegah gejala hingga usia tertentu sehingga meningkatkan harapan hidup. Dalam penelitian ini bertujuan untuk menggunakan gambar otak dari Magnetic Resonace Imaging (MRI) untuk mengetahui bagaimana penyakit tersebut menyebar, dengan menggunakan metode deep learning menggunakan model atau arsitektur InceptionV3, VGG16, VGG19, NasnetMobile, dan MobileNet dengan melalui proses Input data - augmentasi - preprocessing - Classification (model a b c d ) - result dan pembelajaran mesin pada kumpulan data klinis dan paraklinis untuk mendiagnosis secara akurat meggunakan dataset yang berasal dari Parkinsons Brain MRI sebanyak 2 kelas yaitu kelas normal dan Parkinson. Hasil dari penelitian menggunakan deep learning berdasarkan kelima algoritma yang digunakan tersebut diperoleh nilai akurasi terbaik dari seluruh model arsitektur adalah arsitektur MobileNet sebesar 99,75% dengan kappa score 99,30% dengan total durasi komputasi selama 2 jam satu menit","PeriodicalId":123793,"journal":{"name":"InComTech : Jurnal Telekomunikasi dan Komputer","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Metode Deep Learning dalam Mengklasifikasi Citra Scan MRI Penyakit Otak Parkinson\",\"authors\":\"Waeisul Bismi, Hani Harafani\",\"doi\":\"10.22441/incomtech.v12i3.15068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penyakit Parkinson merupakan gangguan neurodegenerative yang bersifat progresif dan relative umum pada system saraf pusat yang menyebabkan kesulitan dalam bergerak. Biasanya penyakit ini sering terjadi pada individu berusia lebih dari 60 tahun dipengaruhi oleh factor genetic dan lingkungan. Deteksi dini pada penyakit Parkinson dapat mencegah gejala hingga usia tertentu sehingga meningkatkan harapan hidup. Dalam penelitian ini bertujuan untuk menggunakan gambar otak dari Magnetic Resonace Imaging (MRI) untuk mengetahui bagaimana penyakit tersebut menyebar, dengan menggunakan metode deep learning menggunakan model atau arsitektur InceptionV3, VGG16, VGG19, NasnetMobile, dan MobileNet dengan melalui proses Input data - augmentasi - preprocessing - Classification (model a b c d ) - result dan pembelajaran mesin pada kumpulan data klinis dan paraklinis untuk mendiagnosis secara akurat meggunakan dataset yang berasal dari Parkinsons Brain MRI sebanyak 2 kelas yaitu kelas normal dan Parkinson. Hasil dari penelitian menggunakan deep learning berdasarkan kelima algoritma yang digunakan tersebut diperoleh nilai akurasi terbaik dari seluruh model arsitektur adalah arsitektur MobileNet sebesar 99,75% dengan kappa score 99,30% dengan total durasi komputasi selama 2 jam satu menit\",\"PeriodicalId\":123793,\"journal\":{\"name\":\"InComTech : Jurnal Telekomunikasi dan Komputer\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"InComTech : Jurnal Telekomunikasi dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22441/incomtech.v12i3.15068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"InComTech : Jurnal Telekomunikasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/incomtech.v12i3.15068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕金森氏症是中央神经系统中一种进行性和公共关系的神经退行性疾病,导致运动困难。这种疾病通常发生在60多岁的人群中,受到基因和环境因素的影响。帕金森氏症的早期检测可以预防某些年龄的症状,从而提高预期寿命。在这项研究中,目的是利用磁化共振成像(MRI)的大脑图像来了解疾病是如何传播的,使用基于第3、VGG16、VGG19、NasnetMobile模型的深度学习方法,和MobileNet -增强- preprocessing Classification数据输入过程(a b c d) -论点模型和机器学习的临床数据和paraklinis诊断准确的数据集来自Parkinsons大脑的MRI多达2就是正常的年级和帕金森症。使用深度学习的研究得出的结论是,所有五个应用算法中,手机的最佳准确性是所有模型中最准确的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Metode Deep Learning dalam Mengklasifikasi Citra Scan MRI Penyakit Otak Parkinson
Penyakit Parkinson merupakan gangguan neurodegenerative yang bersifat progresif dan relative umum pada system saraf pusat yang menyebabkan kesulitan dalam bergerak. Biasanya penyakit ini sering terjadi pada individu berusia lebih dari 60 tahun dipengaruhi oleh factor genetic dan lingkungan. Deteksi dini pada penyakit Parkinson dapat mencegah gejala hingga usia tertentu sehingga meningkatkan harapan hidup. Dalam penelitian ini bertujuan untuk menggunakan gambar otak dari Magnetic Resonace Imaging (MRI) untuk mengetahui bagaimana penyakit tersebut menyebar, dengan menggunakan metode deep learning menggunakan model atau arsitektur InceptionV3, VGG16, VGG19, NasnetMobile, dan MobileNet dengan melalui proses Input data - augmentasi - preprocessing - Classification (model a b c d ) - result dan pembelajaran mesin pada kumpulan data klinis dan paraklinis untuk mendiagnosis secara akurat meggunakan dataset yang berasal dari Parkinsons Brain MRI sebanyak 2 kelas yaitu kelas normal dan Parkinson. Hasil dari penelitian menggunakan deep learning berdasarkan kelima algoritma yang digunakan tersebut diperoleh nilai akurasi terbaik dari seluruh model arsitektur adalah arsitektur MobileNet sebesar 99,75% dengan kappa score 99,30% dengan total durasi komputasi selama 2 jam satu menit
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信