无限跳变线性系统的Lyapunov耦合方程

M. Fragoso, J. Baczynski
{"title":"无限跳变线性系统的Lyapunov耦合方程","authors":"M. Fragoso, J. Baczynski","doi":"10.1109/CDC.2000.914150","DOIUrl":null,"url":null,"abstract":"Deals with Lyapunov equations for continuous-time Markov jump linear systems (MJLS). We focus on the case in which the Markov chain has a countably infinite state space. It is shown that the infinite MJLS is stochastically stabilizable (SS) if and only if the associated countably infinite coupled Lyapunov equations have a unique norm bounded strictly positive solution. This result does not hold for mean square stabilizability (MSS), since SS and MSS are no longer equivalent in our set up. To some extent, tools from operator theory in Banach space and, in particular, from semigroup theory are the technical underpinning of the paper.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyapunov coupled equations for infinite jump linear systems\",\"authors\":\"M. Fragoso, J. Baczynski\",\"doi\":\"10.1109/CDC.2000.914150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deals with Lyapunov equations for continuous-time Markov jump linear systems (MJLS). We focus on the case in which the Markov chain has a countably infinite state space. It is shown that the infinite MJLS is stochastically stabilizable (SS) if and only if the associated countably infinite coupled Lyapunov equations have a unique norm bounded strictly positive solution. This result does not hold for mean square stabilizability (MSS), since SS and MSS are no longer equivalent in our set up. To some extent, tools from operator theory in Banach space and, in particular, from semigroup theory are the technical underpinning of the paper.\",\"PeriodicalId\":217237,\"journal\":{\"name\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2000.914150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.914150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了连续时间马尔可夫跳变线性系统的Lyapunov方程。我们关注马尔可夫链具有可数无限状态空间的情况。当且仅当相关的可数无限耦合Lyapunov方程具有唯一范数有界的严格正解时,证明了无限MJLS是随机稳定的。这个结果并不适用于均方稳定性(MSS),因为在我们的设置中,SS和MSS不再等效。在某种程度上,来自巴拿赫空间中的算子理论,特别是半群理论的工具是本文的技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyapunov coupled equations for infinite jump linear systems
Deals with Lyapunov equations for continuous-time Markov jump linear systems (MJLS). We focus on the case in which the Markov chain has a countably infinite state space. It is shown that the infinite MJLS is stochastically stabilizable (SS) if and only if the associated countably infinite coupled Lyapunov equations have a unique norm bounded strictly positive solution. This result does not hold for mean square stabilizability (MSS), since SS and MSS are no longer equivalent in our set up. To some extent, tools from operator theory in Banach space and, in particular, from semigroup theory are the technical underpinning of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信