系列回转机械臂O(n)质量矩阵反演的新视角

Kiju Lee, G. Chirikjian
{"title":"系列回转机械臂O(n)质量矩阵反演的新视角","authors":"Kiju Lee, G. Chirikjian","doi":"10.1109/ROBOT.2005.1570849","DOIUrl":null,"url":null,"abstract":"This paper describes a new algorithm for the efficient mass-matrix inversion of serial manipulators. Whereas several well-known O(n) algorithms already exist, our presentation is an alternative and completely different formulation that builds on Fixman’s theorem from the polymer physics literature. The main contributions here are therefore adding a new perspective to the manipulator dynamics literature and providing an alternative to existing algorithms. The essence of this theory is to consider explicitly the band-diagonal structure of the inverted mass matrix of a manipulator with no constraints on link length, offsets or twist angles, and then build in constraints by appropriate partitioning of the inverse of the unconstrained mass matrix. We present the theory of the partitioned mass matrix and inverse of the mass matrix for serial revolute manipulators. The planar N-link manipulator with revolute joints is used to illustrate the procedure. Numerical results verify the O(n) complexity of the algorithm. Exposure of the robotics community to this approach may lead to new ways of thinking about manipulator dynamics and control.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A New Perspective on O(n) Mass-Matrix Inversion for Serial Revolute Manipulators\",\"authors\":\"Kiju Lee, G. Chirikjian\",\"doi\":\"10.1109/ROBOT.2005.1570849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new algorithm for the efficient mass-matrix inversion of serial manipulators. Whereas several well-known O(n) algorithms already exist, our presentation is an alternative and completely different formulation that builds on Fixman’s theorem from the polymer physics literature. The main contributions here are therefore adding a new perspective to the manipulator dynamics literature and providing an alternative to existing algorithms. The essence of this theory is to consider explicitly the band-diagonal structure of the inverted mass matrix of a manipulator with no constraints on link length, offsets or twist angles, and then build in constraints by appropriate partitioning of the inverse of the unconstrained mass matrix. We present the theory of the partitioned mass matrix and inverse of the mass matrix for serial revolute manipulators. The planar N-link manipulator with revolute joints is used to illustrate the procedure. Numerical results verify the O(n) complexity of the algorithm. Exposure of the robotics community to this approach may lead to new ways of thinking about manipulator dynamics and control.\",\"PeriodicalId\":350878,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2005.1570849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种串行机械臂质量矩阵高效反演的新算法。虽然已有几种著名的O(n)算法存在,但我们的演示是一种完全不同的替代公式,它建立在聚合物物理文献中的Fixman定理基础上。因此,这里的主要贡献是为机械臂动力学文献增加了一个新的视角,并提供了现有算法的替代方案。该理论的实质是明确考虑无连杆长度、偏移量和扭转角约束的机械臂倒质量矩阵的带对角线结构,然后通过对无约束质量矩阵的逆进行适当划分来建立约束。给出了串联旋转机械臂的质量矩阵分块和质量矩阵逆的理论。以具有转动关节的平面n连杆机械臂为例说明了该方法。数值结果验证了该算法的复杂度为0 (n)。机器人社区对这种方法的暴露可能会导致思考机械臂动力学和控制的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Perspective on O(n) Mass-Matrix Inversion for Serial Revolute Manipulators
This paper describes a new algorithm for the efficient mass-matrix inversion of serial manipulators. Whereas several well-known O(n) algorithms already exist, our presentation is an alternative and completely different formulation that builds on Fixman’s theorem from the polymer physics literature. The main contributions here are therefore adding a new perspective to the manipulator dynamics literature and providing an alternative to existing algorithms. The essence of this theory is to consider explicitly the band-diagonal structure of the inverted mass matrix of a manipulator with no constraints on link length, offsets or twist angles, and then build in constraints by appropriate partitioning of the inverse of the unconstrained mass matrix. We present the theory of the partitioned mass matrix and inverse of the mass matrix for serial revolute manipulators. The planar N-link manipulator with revolute joints is used to illustrate the procedure. Numerical results verify the O(n) complexity of the algorithm. Exposure of the robotics community to this approach may lead to new ways of thinking about manipulator dynamics and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信