贝叶斯故障诊断:常用方法与挑战

R. Dearden
{"title":"贝叶斯故障诊断:常用方法与挑战","authors":"R. Dearden","doi":"10.1109/CIP.2010.5604215","DOIUrl":null,"url":null,"abstract":"In this paper we describe a Bayesian approach to fault diagnosis based on Markov chain Monte Carlo algorithms. These approaches are largely applied to hybrid diagnosis problems in which the system being diagnosed is modelled with a mixture of discrete and continuous state variables. We describe the probabilistic hybrid automaton model typically used, and an algorithm based on particle filtering that can be applied to these models. Diagnosis provides some particular challenges for Monte Carlo approaches, including large dimensional state spaces, and low probability transitions in the Markov chain. We discuss these and some proposed solutions to them. Finally, we examine some open challenges for the Bayesian approach.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian fault diagnosis: Common approaches and challenges\",\"authors\":\"R. Dearden\",\"doi\":\"10.1109/CIP.2010.5604215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a Bayesian approach to fault diagnosis based on Markov chain Monte Carlo algorithms. These approaches are largely applied to hybrid diagnosis problems in which the system being diagnosed is modelled with a mixture of discrete and continuous state variables. We describe the probabilistic hybrid automaton model typically used, and an algorithm based on particle filtering that can be applied to these models. Diagnosis provides some particular challenges for Monte Carlo approaches, including large dimensional state spaces, and low probability transitions in the Markov chain. We discuss these and some proposed solutions to them. Finally, we examine some open challenges for the Bayesian approach.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于马尔可夫链蒙特卡罗算法的贝叶斯故障诊断方法。这些方法主要应用于混合诊断问题,其中被诊断的系统是用离散和连续状态变量的混合建模的。我们描述了通常使用的概率混合自动机模型,以及一种基于粒子滤波的算法,可以应用于这些模型。诊断为蒙特卡罗方法提供了一些特殊的挑战,包括大维状态空间和马尔可夫链中的低概率转移。我们讨论了这些问题,并提出了一些解决方案。最后,我们研究了贝叶斯方法的一些开放挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian fault diagnosis: Common approaches and challenges
In this paper we describe a Bayesian approach to fault diagnosis based on Markov chain Monte Carlo algorithms. These approaches are largely applied to hybrid diagnosis problems in which the system being diagnosed is modelled with a mixture of discrete and continuous state variables. We describe the probabilistic hybrid automaton model typically used, and an algorithm based on particle filtering that can be applied to these models. Diagnosis provides some particular challenges for Monte Carlo approaches, including large dimensional state spaces, and low probability transitions in the Markov chain. We discuss these and some proposed solutions to them. Finally, we examine some open challenges for the Bayesian approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信