跟踪随机车辆集在地形

H. Kjellström, S. Wirkander
{"title":"跟踪随机车辆集在地形","authors":"H. Kjellström, S. Wirkander","doi":"10.1109/CVPRW.2003.10097","DOIUrl":null,"url":null,"abstract":"This paper presents a particle filtering formulation for tracking an unknown and varying number of vehicles in terrain. The vehicles are modeled as a random set, i.e. a set of random variables, for which the cardinality is itself a random variable. The particle filter formulation is here extended according to finite set statistics (FISST) which is an extension of Bayesian theory to define operations on random sets. The filter was successfully tested on a simulated scenario with three vehicles moving in terrain, observed by humans in the terrain.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Tracking Random Sets of Vehicles in Terrain\",\"authors\":\"H. Kjellström, S. Wirkander\",\"doi\":\"10.1109/CVPRW.2003.10097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a particle filtering formulation for tracking an unknown and varying number of vehicles in terrain. The vehicles are modeled as a random set, i.e. a set of random variables, for which the cardinality is itself a random variable. The particle filter formulation is here extended according to finite set statistics (FISST) which is an extension of Bayesian theory to define operations on random sets. The filter was successfully tested on a simulated scenario with three vehicles moving in terrain, observed by humans in the terrain.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

本文提出了一种用于地形中未知和变化数量车辆跟踪的粒子滤波公式。车辆被建模为一个随机集合,即一组随机变量,其基数本身就是一个随机变量。本文根据有限集统计量(FISST)对粒子滤波公式进行了扩展,FISST是贝叶斯理论在随机集上定义操作的扩展。该滤波器在三辆车辆在地形中移动的模拟场景中进行了成功的测试,并在地形中由人类观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking Random Sets of Vehicles in Terrain
This paper presents a particle filtering formulation for tracking an unknown and varying number of vehicles in terrain. The vehicles are modeled as a random set, i.e. a set of random variables, for which the cardinality is itself a random variable. The particle filter formulation is here extended according to finite set statistics (FISST) which is an extension of Bayesian theory to define operations on random sets. The filter was successfully tested on a simulated scenario with three vehicles moving in terrain, observed by humans in the terrain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信