{"title":"基于小波系数邻域分布的动态多尺度图像检索","authors":"S. Anthoine, E. Debreuve, Paolo Piro, M. Barlaud","doi":"10.1109/WIAMIS.2008.46","DOIUrl":null,"url":null,"abstract":"In this paper, we define a similarity measure to compare images in the context of (indexing and) retrieval. We use the Kullback-Leibler (KL) divergence to compare sparse multiscale image descriptions in a wavelet domain. The KL divergence between wavelet coefficient distributions has already been used as a similarity measure between images. The novelty here is twofold. Firstly, we consider the dependencies between the coefficients by means of distributions of mixed intra/interscale neighborhoods. Secondly, to cope with the high-dimensionality of the resulting description space, we estimate the KL divergences in the k-th nearest neighbor framework, instead of using classical fixed size kernel methods. Query-by-example experiments are presented.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Neighborhood Distributions of Wavelet Coefficients for On-the-Fly, Multiscale-Based Image Retrieval\",\"authors\":\"S. Anthoine, E. Debreuve, Paolo Piro, M. Barlaud\",\"doi\":\"10.1109/WIAMIS.2008.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a similarity measure to compare images in the context of (indexing and) retrieval. We use the Kullback-Leibler (KL) divergence to compare sparse multiscale image descriptions in a wavelet domain. The KL divergence between wavelet coefficient distributions has already been used as a similarity measure between images. The novelty here is twofold. Firstly, we consider the dependencies between the coefficients by means of distributions of mixed intra/interscale neighborhoods. Secondly, to cope with the high-dimensionality of the resulting description space, we estimate the KL divergences in the k-th nearest neighbor framework, instead of using classical fixed size kernel methods. Query-by-example experiments are presented.\",\"PeriodicalId\":325635,\"journal\":{\"name\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2008.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Neighborhood Distributions of Wavelet Coefficients for On-the-Fly, Multiscale-Based Image Retrieval
In this paper, we define a similarity measure to compare images in the context of (indexing and) retrieval. We use the Kullback-Leibler (KL) divergence to compare sparse multiscale image descriptions in a wavelet domain. The KL divergence between wavelet coefficient distributions has already been used as a similarity measure between images. The novelty here is twofold. Firstly, we consider the dependencies between the coefficients by means of distributions of mixed intra/interscale neighborhoods. Secondly, to cope with the high-dimensionality of the resulting description space, we estimate the KL divergences in the k-th nearest neighbor framework, instead of using classical fixed size kernel methods. Query-by-example experiments are presented.