简化了期权定价的Wiener-Hopf分解

O. Kudryavtsev, Praskoviya Luzhetskaya
{"title":"简化了期权定价的Wiener-Hopf分解","authors":"O. Kudryavtsev, Praskoviya Luzhetskaya","doi":"10.2139/ssrn.3540466","DOIUrl":null,"url":null,"abstract":"The paper suggest a new approach to pricing barrier options under pure non-Gaussian Levy processes with jumps of finite variation. The key idea behind the method to represent the process under consideration as a difference between subordinators (increasing Levy processes). Such splitting rule applied to the process at exponentially distributed randomized time points gives us the possibility to find the option price by analytically solving a sequence of simple Wiener-Hopf equations.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Wiener-Hopf Factorization for Pricing Options Made Easy\",\"authors\":\"O. Kudryavtsev, Praskoviya Luzhetskaya\",\"doi\":\"10.2139/ssrn.3540466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper suggest a new approach to pricing barrier options under pure non-Gaussian Levy processes with jumps of finite variation. The key idea behind the method to represent the process under consideration as a difference between subordinators (increasing Levy processes). Such splitting rule applied to the process at exponentially distributed randomized time points gives us the possibility to find the option price by analytically solving a sequence of simple Wiener-Hopf equations.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3540466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3540466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种具有有限变差跳变的纯非高斯Levy过程下障碍期权定价的新方法。该方法背后的关键思想是将所考虑的过程表示为从属过程之间的差异(增加Levy过程)。将这种分裂规则应用于指数分布随机时间点的过程,使我们能够通过解析求解一系列简单的Wiener-Hopf方程来求出期权价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Wiener-Hopf Factorization for Pricing Options Made Easy
The paper suggest a new approach to pricing barrier options under pure non-Gaussian Levy processes with jumps of finite variation. The key idea behind the method to represent the process under consideration as a difference between subordinators (increasing Levy processes). Such splitting rule applied to the process at exponentially distributed randomized time points gives us the possibility to find the option price by analytically solving a sequence of simple Wiener-Hopf equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信