{"title":"具有数据稀疏性的细粒度偏好感知个性化联邦POI推荐","authors":"Xiao Zhang, Ziming Ye, Jianfeng Lu, Fuzhen Zhuang, Yanwei Zheng, Dongxiao Yu","doi":"10.1145/3539618.3591688","DOIUrl":null,"url":null,"abstract":"With the raised privacy concerns and rigorous data regulations, federated learning has become a hot collaborative learning paradigm for the recommendation model without sharing the highly sensitive POI data. However, the time-sensitive, heterogeneous, and limited POI records seriously restrict the development of federated POI recommendation. To this end, in this paper, we design the fine-grained preference-aware personalized federated POI recommendation framework, namely PrefFedPOI, under extremely sparse historical trajectories to address the above challenges. In details, PrefFedPOI extracts the fine-grained preference of current time slot by combining historical recent preferences and periodic preferences within each local client. Due to the extreme lack of POI data in some time slots, a data amount aware selective strategy is designed for model parameters uploading. Moreover, a performance enhanced clustering mechanism with reinforcement learning is proposed to capture the preference relatedness among all clients to encourage the positive knowledge sharing. Furthermore, a clustering teacher network is designed for improving efficiency by clustering guidance. Extensive experiments are conducted on two diverse real-world datasets to demonstrate the effectiveness of proposed PrefFedPOI comparing with state-of-the-arts. In particular, personalized PrefFedPOI can achieve 7% accuracy improvement on average among data-sparsity clients.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Preference-Aware Personalized Federated POI Recommendation with Data Sparsity\",\"authors\":\"Xiao Zhang, Ziming Ye, Jianfeng Lu, Fuzhen Zhuang, Yanwei Zheng, Dongxiao Yu\",\"doi\":\"10.1145/3539618.3591688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the raised privacy concerns and rigorous data regulations, federated learning has become a hot collaborative learning paradigm for the recommendation model without sharing the highly sensitive POI data. However, the time-sensitive, heterogeneous, and limited POI records seriously restrict the development of federated POI recommendation. To this end, in this paper, we design the fine-grained preference-aware personalized federated POI recommendation framework, namely PrefFedPOI, under extremely sparse historical trajectories to address the above challenges. In details, PrefFedPOI extracts the fine-grained preference of current time slot by combining historical recent preferences and periodic preferences within each local client. Due to the extreme lack of POI data in some time slots, a data amount aware selective strategy is designed for model parameters uploading. Moreover, a performance enhanced clustering mechanism with reinforcement learning is proposed to capture the preference relatedness among all clients to encourage the positive knowledge sharing. Furthermore, a clustering teacher network is designed for improving efficiency by clustering guidance. Extensive experiments are conducted on two diverse real-world datasets to demonstrate the effectiveness of proposed PrefFedPOI comparing with state-of-the-arts. In particular, personalized PrefFedPOI can achieve 7% accuracy improvement on average among data-sparsity clients.\",\"PeriodicalId\":425056,\"journal\":{\"name\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539618.3591688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine-Grained Preference-Aware Personalized Federated POI Recommendation with Data Sparsity
With the raised privacy concerns and rigorous data regulations, federated learning has become a hot collaborative learning paradigm for the recommendation model without sharing the highly sensitive POI data. However, the time-sensitive, heterogeneous, and limited POI records seriously restrict the development of federated POI recommendation. To this end, in this paper, we design the fine-grained preference-aware personalized federated POI recommendation framework, namely PrefFedPOI, under extremely sparse historical trajectories to address the above challenges. In details, PrefFedPOI extracts the fine-grained preference of current time slot by combining historical recent preferences and periodic preferences within each local client. Due to the extreme lack of POI data in some time slots, a data amount aware selective strategy is designed for model parameters uploading. Moreover, a performance enhanced clustering mechanism with reinforcement learning is proposed to capture the preference relatedness among all clients to encourage the positive knowledge sharing. Furthermore, a clustering teacher network is designed for improving efficiency by clustering guidance. Extensive experiments are conducted on two diverse real-world datasets to demonstrate the effectiveness of proposed PrefFedPOI comparing with state-of-the-arts. In particular, personalized PrefFedPOI can achieve 7% accuracy improvement on average among data-sparsity clients.