{"title":"GRNN与BP神经网络预测杨树(P.×euramericana cv. \" 74/76 \")幼苗耗水量的比较","authors":"Wei-dong Gao, Lu-yi Ma, Z. Jia, Y. Ning","doi":"10.1109/ICACTE.2010.5579296","DOIUrl":null,"url":null,"abstract":"Water consumption of plants is a key parameter for formulating irrigation system, and the precise prediction play a important role in improving the use efficiency of limited water resources. In this experiment, by using the method of artificial neural network and MATLAB DATA PROCESSING SYSTEM combined with the meteorological data of air temperature, relative air humidity, solar radiation, wind speed, soil water content and dew point temperature as the input variable, the author established the artificial neural network system to forecast the seedling water consumption of P.×euramericana cv.“74/76”, and through the experiments it has been examined that two neural network system models can be applied in forecasting water consumption of seedlings, and the average relative error of Back Propagation (BP) neural network prediction model was 0.07, the General Regression Neural Network (GRNN) prediction model was 0.05, moreover, the latter had good stability, while that of the former was poor. Therefore, we propose that GRNN model can be used in prediction of seedling water consumption. Furthermore, the maximum relative error of GRNN predication model was 0.106, the minimum relative error was 0.015. The GRNN model is superior to the BP neural network model that the former performs a higher forecasting accuracy with relatively shorter time consumption and faster speed in training.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the GRNN and BP neural network for the prediction of populus (P.×euramericana cv.“74/76”) seedlings' water consumption\",\"authors\":\"Wei-dong Gao, Lu-yi Ma, Z. Jia, Y. Ning\",\"doi\":\"10.1109/ICACTE.2010.5579296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water consumption of plants is a key parameter for formulating irrigation system, and the precise prediction play a important role in improving the use efficiency of limited water resources. In this experiment, by using the method of artificial neural network and MATLAB DATA PROCESSING SYSTEM combined with the meteorological data of air temperature, relative air humidity, solar radiation, wind speed, soil water content and dew point temperature as the input variable, the author established the artificial neural network system to forecast the seedling water consumption of P.×euramericana cv.“74/76”, and through the experiments it has been examined that two neural network system models can be applied in forecasting water consumption of seedlings, and the average relative error of Back Propagation (BP) neural network prediction model was 0.07, the General Regression Neural Network (GRNN) prediction model was 0.05, moreover, the latter had good stability, while that of the former was poor. Therefore, we propose that GRNN model can be used in prediction of seedling water consumption. Furthermore, the maximum relative error of GRNN predication model was 0.106, the minimum relative error was 0.015. The GRNN model is superior to the BP neural network model that the former performs a higher forecasting accuracy with relatively shorter time consumption and faster speed in training.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of the GRNN and BP neural network for the prediction of populus (P.×euramericana cv.“74/76”) seedlings' water consumption
Water consumption of plants is a key parameter for formulating irrigation system, and the precise prediction play a important role in improving the use efficiency of limited water resources. In this experiment, by using the method of artificial neural network and MATLAB DATA PROCESSING SYSTEM combined with the meteorological data of air temperature, relative air humidity, solar radiation, wind speed, soil water content and dew point temperature as the input variable, the author established the artificial neural network system to forecast the seedling water consumption of P.×euramericana cv.“74/76”, and through the experiments it has been examined that two neural network system models can be applied in forecasting water consumption of seedlings, and the average relative error of Back Propagation (BP) neural network prediction model was 0.07, the General Regression Neural Network (GRNN) prediction model was 0.05, moreover, the latter had good stability, while that of the former was poor. Therefore, we propose that GRNN model can be used in prediction of seedling water consumption. Furthermore, the maximum relative error of GRNN predication model was 0.106, the minimum relative error was 0.015. The GRNN model is superior to the BP neural network model that the former performs a higher forecasting accuracy with relatively shorter time consumption and faster speed in training.