基于非线性流形学习的头部姿态估计

B. Raytchev, Ikushi Yoda, K. Sakaue
{"title":"基于非线性流形学习的头部姿态估计","authors":"B. Raytchev, Ikushi Yoda, K. Sakaue","doi":"10.1109/ICPR.2004.1333802","DOIUrl":null,"url":null,"abstract":"In This work we propose an isomap-based nonlinear alternative to the linear subspace method for manifold representation of view-varying faces. Being interested in user-independent head pose estimation, we extend the isomap model (J.B. Tenenbaum et al., 2000) to be able to map (high-dimensional) input data points which are not in the training data set into the dimensionality-reduced space found by the model. From this representation, a pose parameter map relating the input face samples to view angles is learnt. The proposed method is evaluated on a large database of multi-view face images in comparison to two other recently proposed subspace methods.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Head pose estimation by nonlinear manifold learning\",\"authors\":\"B. Raytchev, Ikushi Yoda, K. Sakaue\",\"doi\":\"10.1109/ICPR.2004.1333802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In This work we propose an isomap-based nonlinear alternative to the linear subspace method for manifold representation of view-varying faces. Being interested in user-independent head pose estimation, we extend the isomap model (J.B. Tenenbaum et al., 2000) to be able to map (high-dimensional) input data points which are not in the training data set into the dimensionality-reduced space found by the model. From this representation, a pose parameter map relating the input face samples to view angles is learnt. The proposed method is evaluated on a large database of multi-view face images in comparison to two other recently proposed subspace methods.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1333802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1333802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

在这项工作中,我们提出了一种基于等距映射的非线性替代线性子空间方法来表示视图变化面的流形。由于对独立于用户的头部姿态估计感兴趣,我们扩展了isomap模型(J.B. Tenenbaum等人,2000),以便能够将不在训练数据集中的(高维)输入数据点映射到模型找到的降维空间中。从这个表示中,学习一个与输入人脸样本和视角相关的姿态参数映射。在一个大型多视图人脸图像数据库上对该方法进行了评估,并与最近提出的另外两种子空间方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head pose estimation by nonlinear manifold learning
In This work we propose an isomap-based nonlinear alternative to the linear subspace method for manifold representation of view-varying faces. Being interested in user-independent head pose estimation, we extend the isomap model (J.B. Tenenbaum et al., 2000) to be able to map (high-dimensional) input data points which are not in the training data set into the dimensionality-reduced space found by the model. From this representation, a pose parameter map relating the input face samples to view angles is learnt. The proposed method is evaluated on a large database of multi-view face images in comparison to two other recently proposed subspace methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信