Sugeno积分的扩展Chebyshev型不等式

H. Román-Flores, A. Flores-Franulic, H. Agahi
{"title":"Sugeno积分的扩展Chebyshev型不等式","authors":"H. Román-Flores, A. Flores-Franulic, H. Agahi","doi":"10.1109/NAFIPS.2010.5548189","DOIUrl":null,"url":null,"abstract":"An extended Chebyshev type inequality for the Sugeno integral on abstract spaces is studied. More precisely, necessary and sufficient conditions under which the inequality, ∫<inf>A</inf>Φ(f ⋆ g)dµ ≥ (∫<inf>A</inf>Φ(f)dµ) ⋆ (∫<inf>A</inf> Φ(g)dµ) or its reverse hold for an arbitrary fuzzy measure-based type Sugeno integral µ and a binary operation ⋆: [0, ∞)<sup>2</sup> → [0, ∞) and a nonnegative function Φ : [0, ∞) → [0, ∞), are given.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"427 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extended Chebyshev type inequality for Sugeno integral\",\"authors\":\"H. Román-Flores, A. Flores-Franulic, H. Agahi\",\"doi\":\"10.1109/NAFIPS.2010.5548189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extended Chebyshev type inequality for the Sugeno integral on abstract spaces is studied. More precisely, necessary and sufficient conditions under which the inequality, ∫<inf>A</inf>Φ(f ⋆ g)dµ ≥ (∫<inf>A</inf>Φ(f)dµ) ⋆ (∫<inf>A</inf> Φ(g)dµ) or its reverse hold for an arbitrary fuzzy measure-based type Sugeno integral µ and a binary operation ⋆: [0, ∞)<sup>2</sup> → [0, ∞) and a nonnegative function Φ : [0, ∞) → [0, ∞), are given.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"427 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了抽象空间上Sugeno积分的一个扩展Chebyshev型不等式。更精确地说,给出了任意模糊测度型Sugeno积分和二元运算- - -[0,∞)2→[0,∞)和非负函数Φ:[0,∞)→[0,∞)的不等式∫AΦ(f - - - g)dµ≥(∫AΦ(f)dµ)- - -(∫A - - Φ(g)dµ)或其逆保持的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Chebyshev type inequality for Sugeno integral
An extended Chebyshev type inequality for the Sugeno integral on abstract spaces is studied. More precisely, necessary and sufficient conditions under which the inequality, ∫AΦ(f ⋆ g)dµ ≥ (∫AΦ(f)dµ) ⋆ (∫A Φ(g)dµ) or its reverse hold for an arbitrary fuzzy measure-based type Sugeno integral µ and a binary operation ⋆: [0, ∞)2 → [0, ∞) and a nonnegative function Φ : [0, ∞) → [0, ∞), are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信