基于混合的深度生成网络的可控光伏场景生成

Yifei Wu, Bo Wang, Xuanning Song, Jiaxian Zou
{"title":"基于混合的深度生成网络的可控光伏场景生成","authors":"Yifei Wu, Bo Wang, Xuanning Song, Jiaxian Zou","doi":"10.1109/ICCSI55536.2022.9970615","DOIUrl":null,"url":null,"abstract":"As a type of Monte Carlo simulation, scenario generation is an effective method to solve the uncertainty problem in stochastic planning of integrated power systems. This paper proposes a novel model for photovoltaic (PV) scenario generation by employing interpretable condition in controllable generative adversarial networks (GANs). In order to improve the generalization performance of the network and increase the robustness to adversarial examples, a data augmentation strategy is introduced to the network. Simulation results demonstrate that, the proposed model can achieve the controllable generation of scenarios covering explicit statistical characteristics and produce brand new patterns not covered by the existing trajectories.","PeriodicalId":421514,"journal":{"name":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable Photovoltaic Scenario Generation via Mixup-based Deep Generative Networks\",\"authors\":\"Yifei Wu, Bo Wang, Xuanning Song, Jiaxian Zou\",\"doi\":\"10.1109/ICCSI55536.2022.9970615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a type of Monte Carlo simulation, scenario generation is an effective method to solve the uncertainty problem in stochastic planning of integrated power systems. This paper proposes a novel model for photovoltaic (PV) scenario generation by employing interpretable condition in controllable generative adversarial networks (GANs). In order to improve the generalization performance of the network and increase the robustness to adversarial examples, a data augmentation strategy is introduced to the network. Simulation results demonstrate that, the proposed model can achieve the controllable generation of scenarios covering explicit statistical characteristics and produce brand new patterns not covered by the existing trajectories.\",\"PeriodicalId\":421514,\"journal\":{\"name\":\"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"volume\":\"294 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSI55536.2022.9970615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI55536.2022.9970615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

场景生成作为蒙特卡罗仿真的一种,是解决综合电力系统随机规划不确定性问题的有效方法。本文提出了一种基于可解释条件的可控生成对抗网络(GANs)光伏场景生成模型。为了提高网络的泛化性能和增强网络对对抗样本的鲁棒性,在网络中引入了数据增强策略。仿真结果表明,该模型能够实现覆盖明确统计特征的场景的可控生成,并产生现有轨迹未覆盖的全新模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Photovoltaic Scenario Generation via Mixup-based Deep Generative Networks
As a type of Monte Carlo simulation, scenario generation is an effective method to solve the uncertainty problem in stochastic planning of integrated power systems. This paper proposes a novel model for photovoltaic (PV) scenario generation by employing interpretable condition in controllable generative adversarial networks (GANs). In order to improve the generalization performance of the network and increase the robustness to adversarial examples, a data augmentation strategy is introduced to the network. Simulation results demonstrate that, the proposed model can achieve the controllable generation of scenarios covering explicit statistical characteristics and produce brand new patterns not covered by the existing trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信