基于图生成器的群体内部结构控制

Hiroto Yamaguchi, Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Makoto Onizuka
{"title":"基于图生成器的群体内部结构控制","authors":"Hiroto Yamaguchi, Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Makoto Onizuka","doi":"10.1109/ASONAM49781.2020.9381439","DOIUrl":null,"url":null,"abstract":"We propose a novel edge generation procedure, Community-aware Edge Generation (CEG), which controls the internal structure of communities: hub dominance and clustering coefficient. CEG is designed to be adaptable to existing graph generators. We demonstrate the effectiveness of CEG from three aspects. First, we validate that CEG generates graphs with similar internal structures to given real-world graphs. Second, we show how the parameters of CEG control the internal structure of communities. Finally, we show that CEG can generate various types of internal structures of communities by visualizing generated graphs.","PeriodicalId":196317,"journal":{"name":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Controlling Internal Structure of Communities on Graph Generator\",\"authors\":\"Hiroto Yamaguchi, Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Makoto Onizuka\",\"doi\":\"10.1109/ASONAM49781.2020.9381439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel edge generation procedure, Community-aware Edge Generation (CEG), which controls the internal structure of communities: hub dominance and clustering coefficient. CEG is designed to be adaptable to existing graph generators. We demonstrate the effectiveness of CEG from three aspects. First, we validate that CEG generates graphs with similar internal structures to given real-world graphs. Second, we show how the parameters of CEG control the internal structure of communities. Finally, we show that CEG can generate various types of internal structures of communities by visualizing generated graphs.\",\"PeriodicalId\":196317,\"journal\":{\"name\":\"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM49781.2020.9381439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM49781.2020.9381439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的边缘生成过程——社区感知边缘生成(Community-aware edge generation, CEG),它可以控制社区的内部结构:枢纽优势度和聚类系数。CEG的设计是为了适应现有的图形生成器。我们从三个方面论证了CEG的有效性。首先,我们验证了CEG生成的图与给定的真实世界图具有相似的内部结构。其次,我们展示了CEG参数是如何控制群落内部结构的。最后,我们证明了CEG可以通过可视化生成的图来生成各种类型的群落内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling Internal Structure of Communities on Graph Generator
We propose a novel edge generation procedure, Community-aware Edge Generation (CEG), which controls the internal structure of communities: hub dominance and clustering coefficient. CEG is designed to be adaptable to existing graph generators. We demonstrate the effectiveness of CEG from three aspects. First, we validate that CEG generates graphs with similar internal structures to given real-world graphs. Second, we show how the parameters of CEG control the internal structure of communities. Finally, we show that CEG can generate various types of internal structures of communities by visualizing generated graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信