采油优化生产智能控制系统

H. M. Yassine, V. Shkodyrev
{"title":"采油优化生产智能控制系统","authors":"H. M. Yassine, V. Shkodyrev","doi":"10.1145/3440840.3440848","DOIUrl":null,"url":null,"abstract":"In the article, we analyze the optimality of an oil production manufacturing via intelligent control digital twines. By examining the process industry, we present the primary keys of oil production lines, productivity, and quality. To spotlight on the intelligent process control system, as well as on the adaptive intelligent optimization of the production process, we used several methods, namely: Multi-Criteria Decision Analysis, Pareto optimization method and approximate neural network integration of all production line process information; in addition to tracking analysis, productivity and quality control. Even though this article discusses the optimality of oil manufacturing, the conclusions determine in this article can be extended to the processing industry worldwide.","PeriodicalId":273859,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The intelligent control system of optimal oil manufacturing production\",\"authors\":\"H. M. Yassine, V. Shkodyrev\",\"doi\":\"10.1145/3440840.3440848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, we analyze the optimality of an oil production manufacturing via intelligent control digital twines. By examining the process industry, we present the primary keys of oil production lines, productivity, and quality. To spotlight on the intelligent process control system, as well as on the adaptive intelligent optimization of the production process, we used several methods, namely: Multi-Criteria Decision Analysis, Pareto optimization method and approximate neural network integration of all production line process information; in addition to tracking analysis, productivity and quality control. Even though this article discusses the optimality of oil manufacturing, the conclusions determine in this article can be extended to the processing industry worldwide.\",\"PeriodicalId\":273859,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440840.3440848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440840.3440848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过智能控制数字绞线对某采油生产过程的最优性进行了分析。通过对过程工业的考察,提出了石油生产线、生产率和质量的主要关键。针对智能过程控制系统,以及生产过程的自适应智能优化问题,采用了多准则决策分析、Pareto优化方法和近似神经网络集成的方法对生产线的所有过程信息进行了分析;除了跟踪分析,生产力和质量控制。尽管本文讨论的是石油制造业的最优性,但本文所确定的结论可以推广到世界范围内的加工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The intelligent control system of optimal oil manufacturing production
In the article, we analyze the optimality of an oil production manufacturing via intelligent control digital twines. By examining the process industry, we present the primary keys of oil production lines, productivity, and quality. To spotlight on the intelligent process control system, as well as on the adaptive intelligent optimization of the production process, we used several methods, namely: Multi-Criteria Decision Analysis, Pareto optimization method and approximate neural network integration of all production line process information; in addition to tracking analysis, productivity and quality control. Even though this article discusses the optimality of oil manufacturing, the conclusions determine in this article can be extended to the processing industry worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信