{"title":"用嵌入式光纤光栅传感器监测裂纹扩展:纤维增强塑料裂纹扩展检测","authors":"G. Pereira, Lars Pilgaard Mikkelsen, M. McGugan","doi":"10.5220/0005325901330139","DOIUrl":null,"url":null,"abstract":"This article presents a novel method to assess a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Cantilever Beams specimens made with glass fibre glued with structural adhesive, were instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. A digital image correlation technique was used to determine the presence of the specific phenomena caused by the crack, and to correlate with the FBG sensor. A Material-Sensor model was developed in order to predict the sensor output response under a crack/delamination situation, which can be used as an analysis tool for future application of this measurement technology in more complex structures.","PeriodicalId":170064,"journal":{"name":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Crack growth monitoring by embedded optical Fibre Bragg Grating sensors: Fibre reinforced plastic crack growing detection\",\"authors\":\"G. Pereira, Lars Pilgaard Mikkelsen, M. McGugan\",\"doi\":\"10.5220/0005325901330139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel method to assess a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Cantilever Beams specimens made with glass fibre glued with structural adhesive, were instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. A digital image correlation technique was used to determine the presence of the specific phenomena caused by the crack, and to correlate with the FBG sensor. A Material-Sensor model was developed in order to predict the sensor output response under a crack/delamination situation, which can be used as an analysis tool for future application of this measurement technology in more complex structures.\",\"PeriodicalId\":170064,\"journal\":{\"name\":\"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005325901330139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005325901330139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This article presents a novel method to assess a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Cantilever Beams specimens made with glass fibre glued with structural adhesive, were instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. A digital image correlation technique was used to determine the presence of the specific phenomena caused by the crack, and to correlate with the FBG sensor. A Material-Sensor model was developed in order to predict the sensor output response under a crack/delamination situation, which can be used as an analysis tool for future application of this measurement technology in more complex structures.