使用差分隐私保护关键基础设施数据中的个人身份信息(PII)

Asma Alnemari, R. Raj, C. Romanowski, S. Mishra
{"title":"使用差分隐私保护关键基础设施数据中的个人身份信息(PII)","authors":"Asma Alnemari, R. Raj, C. Romanowski, S. Mishra","doi":"10.1109/HST47167.2019.9032942","DOIUrl":null,"url":null,"abstract":"In critical infrastructure (CI) sectors such as emergency management or healthcare, researchers can analyze and detect useful patterns in data and help emergency management personnel efficaciously allocate limited resources or detect epidemiology spread patterns. However, all of this data contains personally identifiable information (PII) that needs to be safeguarded for legal and ethical reasons. Traditional techniques for safeguarding, such as anonymization, have shown to be ineffective. Differential privacy is a technique that supports individual privacy while allowing the analysis of datasets for societal benefit. This paper motivates the use of differential privacy to answer a wide range of queries about CI data containing PII with better privacy guarantees than is possible with traditional techniques. Moreover, it introduces a new technique based on Multiple-attribute Workload Partitioning, which does not depend on the nature of the underlying dataset and provides better protection for privacy than current differential privacy approaches.","PeriodicalId":293746,"journal":{"name":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Protecting Personally Identifiable Information (PII) in Critical Infrastructure Data Using Differential Privacy\",\"authors\":\"Asma Alnemari, R. Raj, C. Romanowski, S. Mishra\",\"doi\":\"10.1109/HST47167.2019.9032942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In critical infrastructure (CI) sectors such as emergency management or healthcare, researchers can analyze and detect useful patterns in data and help emergency management personnel efficaciously allocate limited resources or detect epidemiology spread patterns. However, all of this data contains personally identifiable information (PII) that needs to be safeguarded for legal and ethical reasons. Traditional techniques for safeguarding, such as anonymization, have shown to be ineffective. Differential privacy is a technique that supports individual privacy while allowing the analysis of datasets for societal benefit. This paper motivates the use of differential privacy to answer a wide range of queries about CI data containing PII with better privacy guarantees than is possible with traditional techniques. Moreover, it introduces a new technique based on Multiple-attribute Workload Partitioning, which does not depend on the nature of the underlying dataset and provides better protection for privacy than current differential privacy approaches.\",\"PeriodicalId\":293746,\"journal\":{\"name\":\"2019 IEEE International Symposium on Technologies for Homeland Security (HST)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST47167.2019.9032942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST47167.2019.9032942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在应急管理或医疗保健等关键基础设施(CI)部门,研究人员可以分析和检测数据中的有用模式,并帮助应急管理人员有效地分配有限的资源或检测流行病学传播模式。但是,所有这些数据都包含出于法律和道德原因需要保护的个人身份信息(PII)。传统的保护技术,如匿名化,已经被证明是无效的。差异隐私是一种支持个人隐私的技术,同时允许为社会利益分析数据集。本文鼓励使用差分隐私来回答关于包含PII的CI数据的广泛查询,并且具有比传统技术更好的隐私保证。此外,它还引入了一种基于多属性工作负载分区的新技术,该技术不依赖于底层数据集的性质,并且比当前的差分隐私方法提供更好的隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protecting Personally Identifiable Information (PII) in Critical Infrastructure Data Using Differential Privacy
In critical infrastructure (CI) sectors such as emergency management or healthcare, researchers can analyze and detect useful patterns in data and help emergency management personnel efficaciously allocate limited resources or detect epidemiology spread patterns. However, all of this data contains personally identifiable information (PII) that needs to be safeguarded for legal and ethical reasons. Traditional techniques for safeguarding, such as anonymization, have shown to be ineffective. Differential privacy is a technique that supports individual privacy while allowing the analysis of datasets for societal benefit. This paper motivates the use of differential privacy to answer a wide range of queries about CI data containing PII with better privacy guarantees than is possible with traditional techniques. Moreover, it introduces a new technique based on Multiple-attribute Workload Partitioning, which does not depend on the nature of the underlying dataset and provides better protection for privacy than current differential privacy approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信