大气质量参数预报特征选择导论

G. Papadourakis, I. Kyriakidis
{"title":"大气质量参数预报特征选择导论","authors":"G. Papadourakis, I. Kyriakidis","doi":"10.1109/SITIS.2015.23","DOIUrl":null,"url":null,"abstract":"Knowledge is only valuable when it can be used efficiently and effectively, therefore knowledge management is increasingly being recognized as a key element in extracting its value. Feature selection and dimensionality reduction can be used for that purpose, in order to reduce the time required to perform data mining and to increase the resulting classification accuracy. This paper presents an introduction to some of these algorithms that can be used to forecast atmospheric quality parameters.","PeriodicalId":128616,"journal":{"name":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction to Feature Selection for Atmospheric Quality Parameters Forecasting\",\"authors\":\"G. Papadourakis, I. Kyriakidis\",\"doi\":\"10.1109/SITIS.2015.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge is only valuable when it can be used efficiently and effectively, therefore knowledge management is increasingly being recognized as a key element in extracting its value. Feature selection and dimensionality reduction can be used for that purpose, in order to reduce the time required to perform data mining and to increase the resulting classification accuracy. This paper presents an introduction to some of these algorithms that can be used to forecast atmospheric quality parameters.\",\"PeriodicalId\":128616,\"journal\":{\"name\":\"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2015.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识只有在被有效地利用时才有价值,因此知识管理越来越被认为是提取知识价值的关键因素。特征选择和降维可以用于此目的,以减少执行数据挖掘所需的时间并提高结果的分类准确性。本文介绍了其中一些可用于预报大气质量参数的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to Feature Selection for Atmospheric Quality Parameters Forecasting
Knowledge is only valuable when it can be used efficiently and effectively, therefore knowledge management is increasingly being recognized as a key element in extracting its value. Feature selection and dimensionality reduction can be used for that purpose, in order to reduce the time required to perform data mining and to increase the resulting classification accuracy. This paper presents an introduction to some of these algorithms that can be used to forecast atmospheric quality parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信