具有周期扰动的环空压气机定子叶栅二元重复模型预测主动流量控制

Benjamin Fietzke, R. King, Jan Mihalyovics, D. Peitsch
{"title":"具有周期扰动的环空压气机定子叶栅二元重复模型预测主动流量控制","authors":"Benjamin Fietzke, R. King, Jan Mihalyovics, D. Peitsch","doi":"10.1115/gt2021-58744","DOIUrl":null,"url":null,"abstract":"\n Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine’s last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic Active Flow Control (AFC) influencing the stator blade’s suction side, and a rotating throttling disc downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes Cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row’s efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a Repetitive Model Predictive Control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves’ switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Binary Repetitive Model Predictive Active Flow Control Applied to an Annular Compressor Stator Cascade With Periodic Disturbances\",\"authors\":\"Benjamin Fietzke, R. King, Jan Mihalyovics, D. Peitsch\",\"doi\":\"10.1115/gt2021-58744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine’s last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic Active Flow Control (AFC) influencing the stator blade’s suction side, and a rotating throttling disc downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes Cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row’s efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a Repetitive Model Predictive Control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves’ switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.\",\"PeriodicalId\":169840,\"journal\":{\"name\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新的压力增益燃烧概念在燃气轮机压气机最后一排定子中调用周期性流动扰动。这一贡献提出了对这些周期性扰动对环形压缩机定子钻机影响的缓解努力的研究。在通道下游安装气动主动流量控制装置(AFC),对静叶吸力侧产生影响,并在通道下游安装旋转节流盘,产生周期性扰动。对于定常吹气,随着驱动幅值Cμ的增大,轮毂角涡扩展对吸力侧流动的影响减小,导致通道静压上升系数Cp增大。考虑到校正的总压损失系数ζ*,其中包括驱动努力,由于驱动质量流的成本增加,定子排的效率随着cμ的增加而降低。因此,提出了一种闭环方法来更具体地解决扰动的影响,从而降低了驱动成本,即质量流量。为此,利用诱导扰动的周期性特性,采用了重复模型预测控制(RMPC)。考虑到电磁阀的开关特性,所提出的RMPC公式被限制在二进制控制域中。在保证实时性能的前提下,提出了一种在RMPC内有效实现优化的方法。作为结果,Cp增加了相似的幅度,但较低的驱动质量流量高达66%,导致一个更低的ζ*为相似的值的cμ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Repetitive Model Predictive Active Flow Control Applied to an Annular Compressor Stator Cascade With Periodic Disturbances
Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine’s last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic Active Flow Control (AFC) influencing the stator blade’s suction side, and a rotating throttling disc downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes Cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row’s efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a Repetitive Model Predictive Control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves’ switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信