{"title":"Hardy空间H2(h)中标准正交小波的构造","authors":"Hirofumi Hashimoto, T. Kinoshita","doi":"10.1142/s0219691321500442","DOIUrl":null,"url":null,"abstract":"We are concerned with the orthonormal wavelet [Formula: see text] in the Hardy space [Formula: see text] which is a closed subspace of [Formula: see text] without negative frequency components. It is well known that there does not exist an [Formula: see text]-wavelet such that [Formula: see text] is continuous on [Formula: see text] and satisfies [Formula: see text] for some [Formula: see text]. The aim of this paper is to find a critical decay rate in the existing [Formula: see text]-wavelet under the condition that [Formula: see text] is continuous on [Formula: see text]. Moreover, we also construct a concrete [Formula: see text]-wavelet having infinite vanishing moments.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"420 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the construction of the orthonormal wavelet in the Hardy space H2(ℝ)\",\"authors\":\"Hirofumi Hashimoto, T. Kinoshita\",\"doi\":\"10.1142/s0219691321500442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with the orthonormal wavelet [Formula: see text] in the Hardy space [Formula: see text] which is a closed subspace of [Formula: see text] without negative frequency components. It is well known that there does not exist an [Formula: see text]-wavelet such that [Formula: see text] is continuous on [Formula: see text] and satisfies [Formula: see text] for some [Formula: see text]. The aim of this paper is to find a critical decay rate in the existing [Formula: see text]-wavelet under the condition that [Formula: see text] is continuous on [Formula: see text]. Moreover, we also construct a concrete [Formula: see text]-wavelet having infinite vanishing moments.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"420 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the construction of the orthonormal wavelet in the Hardy space H2(ℝ)
We are concerned with the orthonormal wavelet [Formula: see text] in the Hardy space [Formula: see text] which is a closed subspace of [Formula: see text] without negative frequency components. It is well known that there does not exist an [Formula: see text]-wavelet such that [Formula: see text] is continuous on [Formula: see text] and satisfies [Formula: see text] for some [Formula: see text]. The aim of this paper is to find a critical decay rate in the existing [Formula: see text]-wavelet under the condition that [Formula: see text] is continuous on [Formula: see text]. Moreover, we also construct a concrete [Formula: see text]-wavelet having infinite vanishing moments.