将n维数据并行性有效映射到gpu线程空间

Niek Janssen, S. Scholz
{"title":"将n维数据并行性有效映射到gpu线程空间","authors":"Niek Janssen, S. Scholz","doi":"10.1145/3544885.3544894","DOIUrl":null,"url":null,"abstract":"Data-Parallelism on multi-dimensional arrays can be conveniently specified as element-wise computations that are executed across n-dimensional index-spaces. While this at first glance matches very well the concept of n-dimensional thread-spaces as provided by the programming model of GPUs, in practice, a one-to-one correspondence often does not work out. This paper proposes a small set of combinators for mapping multi-dimensional index spaces onto multi-dimensional thread-index spaces suitable for execution on GPUs. For each combinator, we provide an inverse operation, which allows the original indices to be recovered within the individual threads. This setup facilitates arbitrary n-dimensional array computations to be executed on GPUs with arbitrary thread-space constraints provided the overall resources required for the computation do not exceed those of the GPU.","PeriodicalId":176585,"journal":{"name":"Proceedings of the 33rd Symposium on Implementation and Application of Functional Languages","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mapping N-Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces\",\"authors\":\"Niek Janssen, S. Scholz\",\"doi\":\"10.1145/3544885.3544894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-Parallelism on multi-dimensional arrays can be conveniently specified as element-wise computations that are executed across n-dimensional index-spaces. While this at first glance matches very well the concept of n-dimensional thread-spaces as provided by the programming model of GPUs, in practice, a one-to-one correspondence often does not work out. This paper proposes a small set of combinators for mapping multi-dimensional index spaces onto multi-dimensional thread-index spaces suitable for execution on GPUs. For each combinator, we provide an inverse operation, which allows the original indices to be recovered within the individual threads. This setup facilitates arbitrary n-dimensional array computations to be executed on GPUs with arbitrary thread-space constraints provided the overall resources required for the computation do not exceed those of the GPU.\",\"PeriodicalId\":176585,\"journal\":{\"name\":\"Proceedings of the 33rd Symposium on Implementation and Application of Functional Languages\",\"volume\":\"354 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Symposium on Implementation and Application of Functional Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544885.3544894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Symposium on Implementation and Application of Functional Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544885.3544894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多维数组上的数据并行性可以方便地指定为跨n维索引空间执行的逐元素计算。虽然乍一看这非常符合gpu编程模型提供的n维线程空间的概念,但在实践中,一对一的对应关系通常无法实现。本文提出了一组组合子,用于将多维索引空间映射到适合在gpu上执行的多维线程索引空间。对于每个组合子,我们提供一个逆操作,允许在单个线程中恢复原始索引。这种设置有助于在具有任意线程空间约束的GPU上执行任意n维数组计算,前提是计算所需的总体资源不超过GPU的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Mapping N-Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces
Data-Parallelism on multi-dimensional arrays can be conveniently specified as element-wise computations that are executed across n-dimensional index-spaces. While this at first glance matches very well the concept of n-dimensional thread-spaces as provided by the programming model of GPUs, in practice, a one-to-one correspondence often does not work out. This paper proposes a small set of combinators for mapping multi-dimensional index spaces onto multi-dimensional thread-index spaces suitable for execution on GPUs. For each combinator, we provide an inverse operation, which allows the original indices to be recovered within the individual threads. This setup facilitates arbitrary n-dimensional array computations to be executed on GPUs with arbitrary thread-space constraints provided the overall resources required for the computation do not exceed those of the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信