考虑噪声正则化的MEG/EEG数据神经活动重构

Camilo Ernesto Ardila Franco, José David López Hincapié, J. Espinosa
{"title":"考虑噪声正则化的MEG/EEG数据神经活动重构","authors":"Camilo Ernesto Ardila Franco, José David López Hincapié, J. Espinosa","doi":"10.1109/STSIVA.2012.6340551","DOIUrl":null,"url":null,"abstract":"CATHEGORY 2: The reconstruction of neural activity acquired with MEG/EEG devices (magnetoencephalogram/electroencephalogram) consists on generating three dimensional images indicating the location of the sources of activity. The neural activity is commonly modeled as current dipoles distributed over the cortical surface, for guaranteeing a linear propagation model though the head until the sensors placed on the scalp. There are several solution approaches used for estimating neural activity, they are mainly differentiated in the a priori information included and their sensibility to high noise levels. A comparison between different static solution approaches commonly used in the literature (minimum norm, LORETA, sLORETA) is presented in this paper. Their performance has been evaluated in different noise conditions with and without regularization for reducing uncertainty, being the general cross validation the best fitted regularization. Then it has been tested the effect of the number of dipoles used in the forward modeling; models with 5124, 8196 and 20484 dipoles were compared giving similar estimation errors but importance differences in computational effort were observed.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural activity reconstruction with MEG/EEG data considering noise regularization\",\"authors\":\"Camilo Ernesto Ardila Franco, José David López Hincapié, J. Espinosa\",\"doi\":\"10.1109/STSIVA.2012.6340551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CATHEGORY 2: The reconstruction of neural activity acquired with MEG/EEG devices (magnetoencephalogram/electroencephalogram) consists on generating three dimensional images indicating the location of the sources of activity. The neural activity is commonly modeled as current dipoles distributed over the cortical surface, for guaranteeing a linear propagation model though the head until the sensors placed on the scalp. There are several solution approaches used for estimating neural activity, they are mainly differentiated in the a priori information included and their sensibility to high noise levels. A comparison between different static solution approaches commonly used in the literature (minimum norm, LORETA, sLORETA) is presented in this paper. Their performance has been evaluated in different noise conditions with and without regularization for reducing uncertainty, being the general cross validation the best fitted regularization. Then it has been tested the effect of the number of dipoles used in the forward modeling; models with 5124, 8196 and 20484 dipoles were compared giving similar estimation errors but importance differences in computational effort were observed.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类2:用MEG/EEG设备(脑磁图/脑电图)获得的神经活动重建包括生成指示活动源位置的三维图像。神经活动通常被建模为分布在皮层表面的电流偶极子,以保证通过头部直到传感器放置在头皮上的线性传播模型。神经活动的估计方法有几种,它们的主要区别在于所包含的先验信息和对高噪声水平的敏感性。本文对文献中常用的不同静态解方法(最小范数、LORETA、sLORETA)进行了比较。为了减少不确定性,在不同的噪声条件下对它们的性能进行了评估,作为一般交叉验证的最佳拟合正则化。然后验证了正演模拟中偶极子数的影响;比较具有5124、8196和20484偶极子的模型给出了相似的估计误差,但在计算工作量上观察到重要的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural activity reconstruction with MEG/EEG data considering noise regularization
CATHEGORY 2: The reconstruction of neural activity acquired with MEG/EEG devices (magnetoencephalogram/electroencephalogram) consists on generating three dimensional images indicating the location of the sources of activity. The neural activity is commonly modeled as current dipoles distributed over the cortical surface, for guaranteeing a linear propagation model though the head until the sensors placed on the scalp. There are several solution approaches used for estimating neural activity, they are mainly differentiated in the a priori information included and their sensibility to high noise levels. A comparison between different static solution approaches commonly used in the literature (minimum norm, LORETA, sLORETA) is presented in this paper. Their performance has been evaluated in different noise conditions with and without regularization for reducing uncertainty, being the general cross validation the best fitted regularization. Then it has been tested the effect of the number of dipoles used in the forward modeling; models with 5124, 8196 and 20484 dipoles were compared giving similar estimation errors but importance differences in computational effort were observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信