Metropolis-Adjusted Langevin算法中SDES的高斯逼近

S. Särkkä, Christos Merkatas, T. Karvonen
{"title":"Metropolis-Adjusted Langevin算法中SDES的高斯逼近","authors":"S. Särkkä, Christos Merkatas, T. Karvonen","doi":"10.1109/mlsp52302.2021.9596301","DOIUrl":null,"url":null,"abstract":"Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Approximations of SDES in Metropolis-Adjusted Langevin Algorithms\",\"authors\":\"S. Särkkä, Christos Merkatas, T. Karvonen\",\"doi\":\"10.1109/mlsp52302.2021.9596301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫链蒙特卡罗(MCMC)方法是贝叶斯推理和随机模拟的基础。Metropolis-adjusted Langevin算法(MALA)是一种MCMC方法,它依赖于随机微分方程(SDE)的模拟,该方程的平稳分布是使用Euler-Maruyama算法的期望目标密度,并使用Metropolis步长来解释模拟误差。在本文中,我们提出了一种修正的MALA,它使用高斯假设密度近似对SDE进行积分。仿真和实际数据集验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Approximations of SDES in Metropolis-Adjusted Langevin Algorithms
Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信