独立多媒体指纹合谋攻击下的检测统计性能

Thinh Nguyen, Puneet Mehra, A. Zakhor, Susie Wee, John Apostolopoulos, Wai-tian Tan, Sumit Roy, Jacob Chakareski, Eric Setton, Yi Liang, Bernd Girod, Marco Fumagalli, Cefriel-Politecnico Di Milano, Italy, P. Sagetong, Antonio Ortega, Amy R. Reibman, Vinay Vaishampayan, Rémi Ronfard, Tien Tran Thuong, France Inria, Xiaofei He, Adam Berenzweig, Daniel P W Ellis, Tong Zhang, Matthew Boutell, Yeow Kee Tan, N. Sherkat, Tony Allen, Y. Sawahata, Kiyoharu Aizawa, Timothy T H Chen, Sidney Fels, Sarah Saehee, Min, Xin Fan, China, Xing Xie, Wei-Ying Ma, Hong-Jiang Zhang, Björn Schuller, M. Zobl, G. Rigoll, Manfred Lang, Hsuan-Huei Shih, Shrikanth S Narayanan, C.-C. Jay Kuo, Rongshan Yu, Xiao Lin, S. Rahardja, Simon Lucey, Tsuhan Chen, M. Reyes-Gomez, Chih-Kai Yang, Sau-Gee Chen, Yongmin Li, Li-Qun Xu, Geoff Morrison, Charles Nightingale, J. Morphett, Jun-Wei Hsieh, John Zhang, Jagath Chen, Samarabandu, S. H. Srinivasan, M. Kankanhalli, Wei-Qi Yan, Hasan Ates, Andy Chang, Oscar C. Au, Ming Yeung, Hong Kong, Gulcin Ca
{"title":"独立多媒体指纹合谋攻击下的检测统计性能","authors":"Thinh Nguyen, Puneet Mehra, A. Zakhor, Susie Wee, John Apostolopoulos, Wai-tian Tan, Sumit Roy, Jacob Chakareski, Eric Setton, Yi Liang, Bernd Girod, Marco Fumagalli, Cefriel-Politecnico Di Milano, Italy, P. Sagetong, Antonio Ortega, Amy R. Reibman, Vinay Vaishampayan, Rémi Ronfard, Tien Tran Thuong, France Inria, Xiaofei He, Adam Berenzweig, Daniel P W Ellis, Tong Zhang, Matthew Boutell, Yeow Kee Tan, N. Sherkat, Tony Allen, Y. Sawahata, Kiyoharu Aizawa, Timothy T H Chen, Sidney Fels, Sarah Saehee, Min, Xin Fan, China, Xing Xie, Wei-Ying Ma, Hong-Jiang Zhang, Björn Schuller, M. Zobl, G. Rigoll, Manfred Lang, Hsuan-Huei Shih, Shrikanth S Narayanan, C.-C. Jay Kuo, Rongshan Yu, Xiao Lin, S. Rahardja, Simon Lucey, Tsuhan Chen, M. Reyes-Gomez, Chih-Kai Yang, Sau-Gee Chen, Yongmin Li, Li-Qun Xu, Geoff Morrison, Charles Nightingale, J. Morphett, Jun-Wei Hsieh, John Zhang, Jagath Chen, Samarabandu, S. H. Srinivasan, M. Kankanhalli, Wei-Qi Yan, Hasan Ates, Andy Chang, Oscar C. Au, Ming Yeung, Hong Kong, Gulcin Ca","doi":"10.1109/ICME.2003.1220890","DOIUrl":null,"url":null,"abstract":"Digital fingerprinting is a technology for tracing the distribution of multimedia content and protecting them from unauthorized redistribution. Collusion attack is a cost effective attack against digital fingerprinting where several copies with the same content but different fingerprints are combined to remove the original fingerprints. In this paper, we consider average attack and several nonlinear collusion attacks on independent Gaussian based fingerprints, and study the detection performance of several commonly used detection statistics in the literature under collusion attacks. Observing that these detection statistics are not specifically designed for collusion scenarios and do not take into account the characteristics of the newly generated fingerprints under collusion attacks, we propose pre-processing techniques to improve the detection performance of the detection statistics under collusion attacks.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance of detection statistics under collusion attacks on independent multimedia fingerprints\",\"authors\":\"Thinh Nguyen, Puneet Mehra, A. Zakhor, Susie Wee, John Apostolopoulos, Wai-tian Tan, Sumit Roy, Jacob Chakareski, Eric Setton, Yi Liang, Bernd Girod, Marco Fumagalli, Cefriel-Politecnico Di Milano, Italy, P. Sagetong, Antonio Ortega, Amy R. Reibman, Vinay Vaishampayan, Rémi Ronfard, Tien Tran Thuong, France Inria, Xiaofei He, Adam Berenzweig, Daniel P W Ellis, Tong Zhang, Matthew Boutell, Yeow Kee Tan, N. Sherkat, Tony Allen, Y. Sawahata, Kiyoharu Aizawa, Timothy T H Chen, Sidney Fels, Sarah Saehee, Min, Xin Fan, China, Xing Xie, Wei-Ying Ma, Hong-Jiang Zhang, Björn Schuller, M. Zobl, G. Rigoll, Manfred Lang, Hsuan-Huei Shih, Shrikanth S Narayanan, C.-C. Jay Kuo, Rongshan Yu, Xiao Lin, S. Rahardja, Simon Lucey, Tsuhan Chen, M. Reyes-Gomez, Chih-Kai Yang, Sau-Gee Chen, Yongmin Li, Li-Qun Xu, Geoff Morrison, Charles Nightingale, J. Morphett, Jun-Wei Hsieh, John Zhang, Jagath Chen, Samarabandu, S. H. Srinivasan, M. Kankanhalli, Wei-Qi Yan, Hasan Ates, Andy Chang, Oscar C. Au, Ming Yeung, Hong Kong, Gulcin Ca\",\"doi\":\"10.1109/ICME.2003.1220890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital fingerprinting is a technology for tracing the distribution of multimedia content and protecting them from unauthorized redistribution. Collusion attack is a cost effective attack against digital fingerprinting where several copies with the same content but different fingerprints are combined to remove the original fingerprints. In this paper, we consider average attack and several nonlinear collusion attacks on independent Gaussian based fingerprints, and study the detection performance of several commonly used detection statistics in the literature under collusion attacks. Observing that these detection statistics are not specifically designed for collusion scenarios and do not take into account the characteristics of the newly generated fingerprints under collusion attacks, we propose pre-processing techniques to improve the detection performance of the detection statistics under collusion attacks.\",\"PeriodicalId\":118560,\"journal\":{\"name\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2003.1220890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1220890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数字指纹是一种追踪多媒体内容分发并防止未经授权再分发的技术。串谋攻击是一种针对数字指纹的高效攻击,通过将内容相同但指纹不同的多个副本组合在一起来去除原始指纹。本文考虑了独立高斯指纹的平均攻击和几种非线性合谋攻击,研究了文献中几种常用的检测统计量在合谋攻击下的检测性能。观察到这些检测统计数据并不是专门针对合谋场景设计的,也没有考虑到合谋攻击下新生成指纹的特征,我们提出了预处理技术来提高合谋攻击下检测统计数据的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of detection statistics under collusion attacks on independent multimedia fingerprints
Digital fingerprinting is a technology for tracing the distribution of multimedia content and protecting them from unauthorized redistribution. Collusion attack is a cost effective attack against digital fingerprinting where several copies with the same content but different fingerprints are combined to remove the original fingerprints. In this paper, we consider average attack and several nonlinear collusion attacks on independent Gaussian based fingerprints, and study the detection performance of several commonly used detection statistics in the literature under collusion attacks. Observing that these detection statistics are not specifically designed for collusion scenarios and do not take into account the characteristics of the newly generated fingerprints under collusion attacks, we propose pre-processing techniques to improve the detection performance of the detection statistics under collusion attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信