基于混合松鼠搜索和入侵杂草的雾云环境成本-最大时间任务调度

Abate Tsegaye, Beakal Gizachew Assefa
{"title":"基于混合松鼠搜索和入侵杂草的雾云环境成本-最大时间任务调度","authors":"Abate Tsegaye, Beakal Gizachew Assefa","doi":"10.1109/ict4da53266.2021.9672215","DOIUrl":null,"url":null,"abstract":"The large-scale development of Internet of Things devices emerged a new computing environment called fog computing to reduce the makespan and cost spent on the cloud devices as a result of distant communication. However, unless the appropriate assignment of tasks is strictly allocated on an available resource of fog nodes, it results in wastage of resources and unachievable quality of service. In this paper, the balance of the most common conflicting objectives in task scheduling that is makespan and cost for the distributed fog-cloud environment is investigated. A novel hybrid squirrel search and invasive weed (HSSIW) algorithm is adapted to assign generated tasks from the Internet of Things(IoT) devices at appropriate fog and cloud nodes so that reduction in cost and makespan is assured. The proposed algorithm has been compared with three related state-of-the algorithms such as genetic algorithm (GA), particle swarm optimization algorithm (PSO), and squirrel search algorithm(SS). The experiment conducted on Cloudsim shows that the proposed algorithm reduces makespan 18% better than classic algorithms such as First Come First Serve(FCFS) and Short Job First(SJF) algorithms. Similarly, it has made a reduction in latency 4 % better than GA and PSO with optimal cost.","PeriodicalId":371663,"journal":{"name":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HSSIW: Hybrid Squirrel Search and Invasive Weed Based Cost-Makespan Task Scheduling for Fog-Cloud Environment\",\"authors\":\"Abate Tsegaye, Beakal Gizachew Assefa\",\"doi\":\"10.1109/ict4da53266.2021.9672215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large-scale development of Internet of Things devices emerged a new computing environment called fog computing to reduce the makespan and cost spent on the cloud devices as a result of distant communication. However, unless the appropriate assignment of tasks is strictly allocated on an available resource of fog nodes, it results in wastage of resources and unachievable quality of service. In this paper, the balance of the most common conflicting objectives in task scheduling that is makespan and cost for the distributed fog-cloud environment is investigated. A novel hybrid squirrel search and invasive weed (HSSIW) algorithm is adapted to assign generated tasks from the Internet of Things(IoT) devices at appropriate fog and cloud nodes so that reduction in cost and makespan is assured. The proposed algorithm has been compared with three related state-of-the algorithms such as genetic algorithm (GA), particle swarm optimization algorithm (PSO), and squirrel search algorithm(SS). The experiment conducted on Cloudsim shows that the proposed algorithm reduces makespan 18% better than classic algorithms such as First Come First Serve(FCFS) and Short Job First(SJF) algorithms. Similarly, it has made a reduction in latency 4 % better than GA and PSO with optimal cost.\",\"PeriodicalId\":371663,\"journal\":{\"name\":\"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ict4da53266.2021.9672215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ict4da53266.2021.9672215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网设备的大规模发展产生了一种新的计算环境,称为雾计算,以减少由于远程通信而导致的云设备的完工时间和成本。但是,除非在雾节点的可用资源上严格分配适当的任务分配,否则会导致资源的浪费和服务质量无法实现。本文研究了分布式雾云环境下任务调度中最常见的冲突目标——最大完工时间和成本之间的平衡问题。一种新的混合松鼠搜索和入侵杂草(HSSIW)算法适用于从物联网(IoT)设备在适当的雾和云节点分配生成的任务,从而确保降低成本和完工时间。将该算法与遗传算法(GA)、粒子群优化算法(PSO)和松鼠搜索算法(SS)进行了比较。在Cloudsim上进行的实验表明,该算法比经典算法(如先到先服务(FCFS)和短作业优先(SJF)算法)减少了18%的完工时间。同样,它比遗传算法和粒子群算法在成本最优的情况下延迟降低了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HSSIW: Hybrid Squirrel Search and Invasive Weed Based Cost-Makespan Task Scheduling for Fog-Cloud Environment
The large-scale development of Internet of Things devices emerged a new computing environment called fog computing to reduce the makespan and cost spent on the cloud devices as a result of distant communication. However, unless the appropriate assignment of tasks is strictly allocated on an available resource of fog nodes, it results in wastage of resources and unachievable quality of service. In this paper, the balance of the most common conflicting objectives in task scheduling that is makespan and cost for the distributed fog-cloud environment is investigated. A novel hybrid squirrel search and invasive weed (HSSIW) algorithm is adapted to assign generated tasks from the Internet of Things(IoT) devices at appropriate fog and cloud nodes so that reduction in cost and makespan is assured. The proposed algorithm has been compared with three related state-of-the algorithms such as genetic algorithm (GA), particle swarm optimization algorithm (PSO), and squirrel search algorithm(SS). The experiment conducted on Cloudsim shows that the proposed algorithm reduces makespan 18% better than classic algorithms such as First Come First Serve(FCFS) and Short Job First(SJF) algorithms. Similarly, it has made a reduction in latency 4 % better than GA and PSO with optimal cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信