解分裂等式不动点问题的自适应步长迭代算法及其应用

Yan Tang, Haiyun Zhou
{"title":"解分裂等式不动点问题的自适应步长迭代算法及其应用","authors":"Yan Tang, Haiyun Zhou","doi":"10.1080/10556788.2022.2117357","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to propose a new alternative step size algorithm without using projections and without prior knowledge of operator norms to the split equality fixed point problem for a class of quasi-pseudo-contractive mappings. Under appropriate conditions, weak and strong convergence theorems for the presented algorithms are obtained, respectively. Furthermore, the algorithm proposed in this paper is also applied to approximate the solution of the split equality equilibrium and split equality inclusion problems.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New iterative algorithms with self-adaptive step size for solving split equality fixed point problem and its applications\",\"authors\":\"Yan Tang, Haiyun Zhou\",\"doi\":\"10.1080/10556788.2022.2117357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to propose a new alternative step size algorithm without using projections and without prior knowledge of operator norms to the split equality fixed point problem for a class of quasi-pseudo-contractive mappings. Under appropriate conditions, weak and strong convergence theorems for the presented algorithms are obtained, respectively. Furthermore, the algorithm proposed in this paper is also applied to approximate the solution of the split equality equilibrium and split equality inclusion problems.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2117357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2117357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要针对一类拟拟压缩映射的分裂等式不动点问题,提出了一种不使用投影和算子范数先验知识的步长替代算法。在适当的条件下,分别得到了算法的弱收敛定理和强收敛定理。此外,本文提出的算法还应用于分裂等式平衡问题和分裂等式包含问题的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New iterative algorithms with self-adaptive step size for solving split equality fixed point problem and its applications
The purpose of this paper is to propose a new alternative step size algorithm without using projections and without prior knowledge of operator norms to the split equality fixed point problem for a class of quasi-pseudo-contractive mappings. Under appropriate conditions, weak and strong convergence theorems for the presented algorithms are obtained, respectively. Furthermore, the algorithm proposed in this paper is also applied to approximate the solution of the split equality equilibrium and split equality inclusion problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信