基于预测计划的神经数据-文本生成

Hanning Gao, Zhihua Wei
{"title":"基于预测计划的神经数据-文本生成","authors":"Hanning Gao, Zhihua Wei","doi":"10.1109/icicse55337.2022.9828913","DOIUrl":null,"url":null,"abstract":"Data-to-text generation task aims to generate natural language text from structured data and has made great progress in recent years with the help of end-to-end neural network models. However, these end-to-end approaches often ignore the structure of the output text and convey the information in the input data in a random order. When faced with the data-to-text generation task, a person tends to make a plan for the complex input before writing the final text, which is inconsistent with end-to-end approaches. In this paper, we propose a novel plan-guided data-to-text generation framework consisting of a plan generator GT5 and a text generator Share-T5. The plan generator GT5 first predicts a plan based on the input data and then the text generator Share-T5 generates the target text based on the input data and the predicted plan. Empirical comparisons with strong baselines on two benchmark datasets show that our proposed plan-guided data-to-text generation framework can significantly improve the performance of plan prediction and text generation.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Data-to-Text Generation Guided by Predicted Plan\",\"authors\":\"Hanning Gao, Zhihua Wei\",\"doi\":\"10.1109/icicse55337.2022.9828913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-to-text generation task aims to generate natural language text from structured data and has made great progress in recent years with the help of end-to-end neural network models. However, these end-to-end approaches often ignore the structure of the output text and convey the information in the input data in a random order. When faced with the data-to-text generation task, a person tends to make a plan for the complex input before writing the final text, which is inconsistent with end-to-end approaches. In this paper, we propose a novel plan-guided data-to-text generation framework consisting of a plan generator GT5 and a text generator Share-T5. The plan generator GT5 first predicts a plan based on the input data and then the text generator Share-T5 generates the target text based on the input data and the predicted plan. Empirical comparisons with strong baselines on two benchmark datasets show that our proposed plan-guided data-to-text generation framework can significantly improve the performance of plan prediction and text generation.\",\"PeriodicalId\":177985,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicse55337.2022.9828913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicse55337.2022.9828913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据到文本生成任务旨在从结构化数据生成自然语言文本,近年来在端到端神经网络模型的帮助下取得了很大进展。然而,这些端到端方法通常忽略输出文本的结构,并以随机顺序传递输入数据中的信息。在面对数据到文本的生成任务时,人们往往会在编写最终文本之前对复杂的输入进行规划,这与端到端方法不一致。在本文中,我们提出了一个新的计划导向的数据到文本生成框架,该框架由一个计划生成器GT5和一个文本生成器Share-T5组成。计划生成器GT5首先根据输入数据预测计划,然后文本生成器Share-T5根据输入数据和预测的计划生成目标文本。在两个基准数据集上与强基线的实证比较表明,我们提出的计划导向数据到文本生成框架可以显著提高计划预测和文本生成的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Data-to-Text Generation Guided by Predicted Plan
Data-to-text generation task aims to generate natural language text from structured data and has made great progress in recent years with the help of end-to-end neural network models. However, these end-to-end approaches often ignore the structure of the output text and convey the information in the input data in a random order. When faced with the data-to-text generation task, a person tends to make a plan for the complex input before writing the final text, which is inconsistent with end-to-end approaches. In this paper, we propose a novel plan-guided data-to-text generation framework consisting of a plan generator GT5 and a text generator Share-T5. The plan generator GT5 first predicts a plan based on the input data and then the text generator Share-T5 generates the target text based on the input data and the predicted plan. Empirical comparisons with strong baselines on two benchmark datasets show that our proposed plan-guided data-to-text generation framework can significantly improve the performance of plan prediction and text generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信