{"title":"三管齐下抑制癌症转移","authors":"Jariya Kalsoom, Sadaf Naeem","doi":"10.37723/jumdc.v14i1.791","DOIUrl":null,"url":null,"abstract":"BACKGROUND & OBJECTIVE: Extracellular signal-regulated kinases 1 and 2 [ERK1/2] have been reported to promote cancer spread through receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK1/2 pathway hyperactivation. The extracellular signal-regulated kinase ERK5 has also been linked to cancer. However, inhibition of ERK1/2 has been reported to cause compensatory hyperactivation of the ERK5 pathway. Therefore, there is a need for simultaneous inhibition of this trio by a common inhibitor. This study aimed to find a novel common inhibitor for ERK1, ERK2 and ERK5, with a special focus on phytochemicals. \nMETHODOLOGY: All the available co-crystallized inhibitors of MEK1, ERK1/2 and ERK5 were used as references for 2D search across zillions of compounds. One hundred molecules with the best matching pharmacophores were extracted per virtual chemical space. A total of 20,000 new structurally diverse chemical entities with scaffold hopping ability were sifted out from these chemical spaces. Virtual screening of ERK1/2 and ERK5 was performed against these compounds. The successfully docked molecules with estimated affinities less than 500 nm were filtered. These filtered protein-molecule complexes of ERK1/2 and ERK5 were exported as Excel sheets, which were then compared to find any overlapping inhibitors. Four novel common/overlapping potential inhibitors were identified. Their pose views were generated, and binding interactions were analyzed. These novel compounds were compared for their absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) properties. \nRESULTS: The molecules m240690bcc215667167368734, rxn109fEMOL37110279EMOL314046334 and LIND027BT1904LN00213276AK0086 showed good binding affinities to the conventional ATP binding pockets of the kinases ERK1/2 and ERK5. \nCONCLUSION: These novel compounds may be proposed as potential common inhibitors of ERK1, 2 and 5. Further in silico analysis and in vitro testing of proteins are required to confirm their inhibitory potential.","PeriodicalId":178216,"journal":{"name":"Journal of University Medical & Dental College","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Pronged Approach to Curb Cancer Metastasis\",\"authors\":\"Jariya Kalsoom, Sadaf Naeem\",\"doi\":\"10.37723/jumdc.v14i1.791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND & OBJECTIVE: Extracellular signal-regulated kinases 1 and 2 [ERK1/2] have been reported to promote cancer spread through receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK1/2 pathway hyperactivation. The extracellular signal-regulated kinase ERK5 has also been linked to cancer. However, inhibition of ERK1/2 has been reported to cause compensatory hyperactivation of the ERK5 pathway. Therefore, there is a need for simultaneous inhibition of this trio by a common inhibitor. This study aimed to find a novel common inhibitor for ERK1, ERK2 and ERK5, with a special focus on phytochemicals. \\nMETHODOLOGY: All the available co-crystallized inhibitors of MEK1, ERK1/2 and ERK5 were used as references for 2D search across zillions of compounds. One hundred molecules with the best matching pharmacophores were extracted per virtual chemical space. A total of 20,000 new structurally diverse chemical entities with scaffold hopping ability were sifted out from these chemical spaces. Virtual screening of ERK1/2 and ERK5 was performed against these compounds. The successfully docked molecules with estimated affinities less than 500 nm were filtered. These filtered protein-molecule complexes of ERK1/2 and ERK5 were exported as Excel sheets, which were then compared to find any overlapping inhibitors. Four novel common/overlapping potential inhibitors were identified. Their pose views were generated, and binding interactions were analyzed. These novel compounds were compared for their absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) properties. \\nRESULTS: The molecules m240690bcc215667167368734, rxn109fEMOL37110279EMOL314046334 and LIND027BT1904LN00213276AK0086 showed good binding affinities to the conventional ATP binding pockets of the kinases ERK1/2 and ERK5. \\nCONCLUSION: These novel compounds may be proposed as potential common inhibitors of ERK1, 2 and 5. Further in silico analysis and in vitro testing of proteins are required to confirm their inhibitory potential.\",\"PeriodicalId\":178216,\"journal\":{\"name\":\"Journal of University Medical & Dental College\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University Medical & Dental College\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37723/jumdc.v14i1.791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University Medical & Dental College","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37723/jumdc.v14i1.791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BACKGROUND & OBJECTIVE: Extracellular signal-regulated kinases 1 and 2 [ERK1/2] have been reported to promote cancer spread through receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK1/2 pathway hyperactivation. The extracellular signal-regulated kinase ERK5 has also been linked to cancer. However, inhibition of ERK1/2 has been reported to cause compensatory hyperactivation of the ERK5 pathway. Therefore, there is a need for simultaneous inhibition of this trio by a common inhibitor. This study aimed to find a novel common inhibitor for ERK1, ERK2 and ERK5, with a special focus on phytochemicals.
METHODOLOGY: All the available co-crystallized inhibitors of MEK1, ERK1/2 and ERK5 were used as references for 2D search across zillions of compounds. One hundred molecules with the best matching pharmacophores were extracted per virtual chemical space. A total of 20,000 new structurally diverse chemical entities with scaffold hopping ability were sifted out from these chemical spaces. Virtual screening of ERK1/2 and ERK5 was performed against these compounds. The successfully docked molecules with estimated affinities less than 500 nm were filtered. These filtered protein-molecule complexes of ERK1/2 and ERK5 were exported as Excel sheets, which were then compared to find any overlapping inhibitors. Four novel common/overlapping potential inhibitors were identified. Their pose views were generated, and binding interactions were analyzed. These novel compounds were compared for their absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) properties.
RESULTS: The molecules m240690bcc215667167368734, rxn109fEMOL37110279EMOL314046334 and LIND027BT1904LN00213276AK0086 showed good binding affinities to the conventional ATP binding pockets of the kinases ERK1/2 and ERK5.
CONCLUSION: These novel compounds may be proposed as potential common inhibitors of ERK1, 2 and 5. Further in silico analysis and in vitro testing of proteins are required to confirm their inhibitory potential.