稀疏矩阵格式的GPU支持向量机

Tsung-Kai Lin, Shao-Yi Chien
{"title":"稀疏矩阵格式的GPU支持向量机","authors":"Tsung-Kai Lin, Shao-Yi Chien","doi":"10.1109/ICMLA.2010.53","DOIUrl":null,"url":null,"abstract":"Emerging general-purpose Graphics Processing Unit (GPU) provides a multi-core platform for wide applications, including machine learning algorithms. In this paper, we proposed several techniques to accelerate Support Vector Machines (SVM) on GPUs. Sparse matrix format is introduced into parallel SVM to achieve better performance. Experimental results show that the speedup of 55x–133.8x over LIBSVM can be achieved in training process on NVIDIA GeForce GTX470.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Support Vector Machines on GPU with Sparse Matrix Format\",\"authors\":\"Tsung-Kai Lin, Shao-Yi Chien\",\"doi\":\"10.1109/ICMLA.2010.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging general-purpose Graphics Processing Unit (GPU) provides a multi-core platform for wide applications, including machine learning algorithms. In this paper, we proposed several techniques to accelerate Support Vector Machines (SVM) on GPUs. Sparse matrix format is introduced into parallel SVM to achieve better performance. Experimental results show that the speedup of 55x–133.8x over LIBSVM can be achieved in training process on NVIDIA GeForce GTX470.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

新兴的通用图形处理单元(GPU)为广泛的应用提供了多核平台,包括机器学习算法。本文提出了几种在gpu上加速支持向量机(SVM)的技术。在并行支持向量机中引入稀疏矩阵格式以获得更好的性能。实验结果表明,在NVIDIA GeForce GTX470上,该算法的训练速度比LIBSVM提高了55x - 133.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Machines on GPU with Sparse Matrix Format
Emerging general-purpose Graphics Processing Unit (GPU) provides a multi-core platform for wide applications, including machine learning algorithms. In this paper, we proposed several techniques to accelerate Support Vector Machines (SVM) on GPUs. Sparse matrix format is introduced into parallel SVM to achieve better performance. Experimental results show that the speedup of 55x–133.8x over LIBSVM can be achieved in training process on NVIDIA GeForce GTX470.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信