检测不同类型异常值的方法

D. Divya, S. Babu
{"title":"检测不同类型异常值的方法","authors":"D. Divya, S. Babu","doi":"10.1109/SAPIENCE.2016.7684114","DOIUrl":null,"url":null,"abstract":"Outliers are those data that deviates significantly from the remaining data. Outliers has emerging applications in irregular credit card transactions, used to find credit card fraud, or identifying patients who shows abnormal symptoms due to suffering from a particular type of disease. This paper gives an idea about the various approaches and techniques used in outlier detection and the areas in which outlier detection is used and also about how outlier detection is handled in higher dimensional data.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Methods to detect different types of outliers\",\"authors\":\"D. Divya, S. Babu\",\"doi\":\"10.1109/SAPIENCE.2016.7684114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outliers are those data that deviates significantly from the remaining data. Outliers has emerging applications in irregular credit card transactions, used to find credit card fraud, or identifying patients who shows abnormal symptoms due to suffering from a particular type of disease. This paper gives an idea about the various approaches and techniques used in outlier detection and the areas in which outlier detection is used and also about how outlier detection is handled in higher dimensional data.\",\"PeriodicalId\":340137,\"journal\":{\"name\":\"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAPIENCE.2016.7684114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

异常值是那些与剩余数据显著偏离的数据。“异常值”在信用卡交易不正常的情况下,被用于发现信用卡欺诈,或因患有某种疾病而出现异常症状的患者。本文介绍了异常点检测中使用的各种方法和技术,以及使用异常点检测的领域,以及如何在高维数据中处理异常点检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods to detect different types of outliers
Outliers are those data that deviates significantly from the remaining data. Outliers has emerging applications in irregular credit card transactions, used to find credit card fraud, or identifying patients who shows abnormal symptoms due to suffering from a particular type of disease. This paper gives an idea about the various approaches and techniques used in outlier detection and the areas in which outlier detection is used and also about how outlier detection is handled in higher dimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信