使用书法特征进行离线写信人识别

J. L. Vásquez, C. Travieso, J. B. Alonso
{"title":"使用书法特征进行离线写信人识别","authors":"J. L. Vásquez, C. Travieso, J. B. Alonso","doi":"10.1109/CCST.2013.6922062","DOIUrl":null,"url":null,"abstract":"This work proposes an off-line writer identification approach based on graphometrical and forensic features. We selected a set of features with independence of the text and some stability degree to natural changes in the writing. The system uses the LS-SVM classifier with RBF kernel, reaching up to 99.1% of success rate for an own database composed by 100 users with 10 samples per each one.","PeriodicalId":243791,"journal":{"name":"2013 47th International Carnahan Conference on Security Technology (ICCST)","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using calligraphies features for off line writer identification\",\"authors\":\"J. L. Vásquez, C. Travieso, J. B. Alonso\",\"doi\":\"10.1109/CCST.2013.6922062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an off-line writer identification approach based on graphometrical and forensic features. We selected a set of features with independence of the text and some stability degree to natural changes in the writing. The system uses the LS-SVM classifier with RBF kernel, reaching up to 99.1% of success rate for an own database composed by 100 users with 10 samples per each one.\",\"PeriodicalId\":243791,\"journal\":{\"name\":\"2013 47th International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"398 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2013.6922062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2013.6922062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作提出了一种基于图形学和法医学特征的离线写作者识别方法。我们选取了一组对文字具有独立性,对文字的自然变化具有一定稳定性的特征。该系统使用带有RBF内核的LS-SVM分类器,对100个用户组成的自有数据库,每个用户10个样本,成功率高达99.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using calligraphies features for off line writer identification
This work proposes an off-line writer identification approach based on graphometrical and forensic features. We selected a set of features with independence of the text and some stability degree to natural changes in the writing. The system uses the LS-SVM classifier with RBF kernel, reaching up to 99.1% of success rate for an own database composed by 100 users with 10 samples per each one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信