{"title":"电动汽车充电的不可抵赖性和端到端安全性","authors":"P. V. Aubel, E. Poll, Joost Rijneveld","doi":"10.1109/ISGTEurope.2019.8905444","DOIUrl":null,"url":null,"abstract":"In this paper we propose a cryptographic solution that provides non-repudiation and end-to-end security for the electric-vehicle-charging ecosystem as it exists in the Netherlands. It is designed to provide long-term non-repudiation, while allowing for data deletion in order to comply with the GDPR. To achieve this, we use signatures on hashes of individual data fields instead of on the combination of fields directly, and we use Merkle authentication trees to reduce the overhead involved.","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Non-Repudiation and End-to-End Security for Electric-Vehicle Charging\",\"authors\":\"P. V. Aubel, E. Poll, Joost Rijneveld\",\"doi\":\"10.1109/ISGTEurope.2019.8905444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a cryptographic solution that provides non-repudiation and end-to-end security for the electric-vehicle-charging ecosystem as it exists in the Netherlands. It is designed to provide long-term non-repudiation, while allowing for data deletion in order to comply with the GDPR. To achieve this, we use signatures on hashes of individual data fields instead of on the combination of fields directly, and we use Merkle authentication trees to reduce the overhead involved.\",\"PeriodicalId\":305933,\"journal\":{\"name\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2019.8905444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2019.8905444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Repudiation and End-to-End Security for Electric-Vehicle Charging
In this paper we propose a cryptographic solution that provides non-repudiation and end-to-end security for the electric-vehicle-charging ecosystem as it exists in the Netherlands. It is designed to provide long-term non-repudiation, while allowing for data deletion in order to comply with the GDPR. To achieve this, we use signatures on hashes of individual data fields instead of on the combination of fields directly, and we use Merkle authentication trees to reduce the overhead involved.