SDETR:注意引导显著目标检测与变压器

Guanze Liu, Bo Xu, Han Huang, Cheng Lu, Yandong Guo
{"title":"SDETR:注意引导显著目标检测与变压器","authors":"Guanze Liu, Bo Xu, Han Huang, Cheng Lu, Yandong Guo","doi":"10.1109/icassp43922.2022.9746367","DOIUrl":null,"url":null,"abstract":"Most existing CNN-based salient object detection methods can identify fine-grained segmentation details like hair and animal fur, but often mispredict the salient object due to lack of global contextual information caused by locality convolution layers. The limited training data of the current SOD task adds additional difficulty to capture the saliency information. In this paper, we propose a two-stage predict-refine SDETR model to leverage both benefits of transformer and CNN layers that can produce results with accurate saliency prediction and fine-grained local details. We also propose a novel pre-train dataset annotation COCO SOD to erase the overfitting problem caused by insufficient training data. Comprehensive experiments on five benchmark datasets demonstrate that the SDETR outperforms state-of-the-art approaches on four evaluation metrics, and our COCO SOD can largely improve the model performance on DUTS, ECSSD, DUT, PASCAL-S datasets.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SDETR: Attention-Guided Salient Object Detection with Transformer\",\"authors\":\"Guanze Liu, Bo Xu, Han Huang, Cheng Lu, Yandong Guo\",\"doi\":\"10.1109/icassp43922.2022.9746367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing CNN-based salient object detection methods can identify fine-grained segmentation details like hair and animal fur, but often mispredict the salient object due to lack of global contextual information caused by locality convolution layers. The limited training data of the current SOD task adds additional difficulty to capture the saliency information. In this paper, we propose a two-stage predict-refine SDETR model to leverage both benefits of transformer and CNN layers that can produce results with accurate saliency prediction and fine-grained local details. We also propose a novel pre-train dataset annotation COCO SOD to erase the overfitting problem caused by insufficient training data. Comprehensive experiments on five benchmark datasets demonstrate that the SDETR outperforms state-of-the-art approaches on four evaluation metrics, and our COCO SOD can largely improve the model performance on DUTS, ECSSD, DUT, PASCAL-S datasets.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现有的大多数基于cnn的显著目标检测方法可以识别毛发、动物皮毛等细粒度的分割细节,但由于局域卷积层导致缺乏全局上下文信息,往往会对显著目标进行错误预测。当前SOD任务的训练数据有限,增加了显著性信息获取的难度。在本文中,我们提出了一个两阶段的预测-细化SDETR模型,以利用变压器层和CNN层的优点,可以产生具有准确的显著性预测和细粒度局部细节的结果。我们还提出了一种新的预训练数据标注COCO SOD,以消除由于训练数据不足而导致的过拟合问题。在五个基准数据集上的综合实验表明,SDETR在四个评估指标上优于最先进的方法,并且我们的COCO SOD可以大大提高DUTS, ECSSD, DUT, PASCAL-S数据集的模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDETR: Attention-Guided Salient Object Detection with Transformer
Most existing CNN-based salient object detection methods can identify fine-grained segmentation details like hair and animal fur, but often mispredict the salient object due to lack of global contextual information caused by locality convolution layers. The limited training data of the current SOD task adds additional difficulty to capture the saliency information. In this paper, we propose a two-stage predict-refine SDETR model to leverage both benefits of transformer and CNN layers that can produce results with accurate saliency prediction and fine-grained local details. We also propose a novel pre-train dataset annotation COCO SOD to erase the overfitting problem caused by insufficient training data. Comprehensive experiments on five benchmark datasets demonstrate that the SDETR outperforms state-of-the-art approaches on four evaluation metrics, and our COCO SOD can largely improve the model performance on DUTS, ECSSD, DUT, PASCAL-S datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信