基于扩展卡尔曼滤波的SLAM实现

A. B. Saman, A. Lotfy
{"title":"基于扩展卡尔曼滤波的SLAM实现","authors":"A. B. Saman, A. Lotfy","doi":"10.1109/ICIAS.2016.7824105","DOIUrl":null,"url":null,"abstract":"This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An implementation of SLAM with extended Kalman filter\",\"authors\":\"A. B. Saman, A. Lotfy\",\"doi\":\"10.1109/ICIAS.2016.7824105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"393 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文讨论了扩展卡尔曼滤波(EKF)在同步定位与映射(SLAM)中的实现。实现分为软件和硬件两个阶段。软件实现使用Python在库数据集上应用EKF来生成假定环境的地图。结果与原始地图进行了对比,发现相对准确,有轻微的误差。在硬件实现阶段,通过放置在移动机器人上的激光测距仪和一对轮式编码器从室内环境中收集真实生活数据。生成的地图显示至少有五个明显的不准确之处,但总体形式尚可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An implementation of SLAM with extended Kalman filter
This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信