{"title":"基于扩展卡尔曼滤波的SLAM实现","authors":"A. B. Saman, A. Lotfy","doi":"10.1109/ICIAS.2016.7824105","DOIUrl":null,"url":null,"abstract":"This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An implementation of SLAM with extended Kalman filter\",\"authors\":\"A. B. Saman, A. Lotfy\",\"doi\":\"10.1109/ICIAS.2016.7824105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"393 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An implementation of SLAM with extended Kalman filter
This paper discusses an implementation of Extended Kalman filter (EKF) in performing Simultaneous Localization and Mapping (SLAM). The implementation is divided into software and hardware phases. The software implementation applies EKF using Python on a library dataset to produce a map of the supposed environment. The result was verified against the original map and found to be relatively accurate with minor inaccuracies. In the hardware implementation stage, real life data was gathered from an indoor environment via a laser range finder and a pair of wheel encoders placed on a mobile robot. The resulting map shows at least five marked inaccuracies but the overall form is passable.