有源可调谐高对比度元结构硅波导

SPIE OPTO Pub Date : 2016-03-15 DOI:10.1117/12.2216273
Lingjun Jiang, Stephen R. Anderson, H. Taleb, Z. Huang, Weimin Zhou
{"title":"有源可调谐高对比度元结构硅波导","authors":"Lingjun Jiang, Stephen R. Anderson, H. Taleb, Z. Huang, Weimin Zhou","doi":"10.1117/12.2216273","DOIUrl":null,"url":null,"abstract":"In this work, we have designed a novel Si based 1-dimensional high contrast meta-structure waveguide that has slow light effect as well as phase tunability using p-n junction. The goal is to use such waveguide to design active optical devices such as high frequency modulators and tunable filters for analog RF-photonics or data communication applications. The Si ridge waveguide has a pair of high contrast grating wings adhered to the waveguide core in the center. Grating bars at two sides of the waveguide are doped P and N-type respectively, while a p-n junction region is formed in the middle of the waveguide core. By applying a voltage to bias the p-n junction, one can sweep the free carriers to change the effective index of the waveguide as well as the dispersion property of the grating. This metastructure Si waveguide is ideal in the design of high frequency optical modulators since the slow light effect can reduce the modulator waveguide length, increase the modulation efficiency as well as compensate other nonlinearity factors of the modulator for analog applications.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active tunable high contrast meta-structure Si waveguide\",\"authors\":\"Lingjun Jiang, Stephen R. Anderson, H. Taleb, Z. Huang, Weimin Zhou\",\"doi\":\"10.1117/12.2216273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have designed a novel Si based 1-dimensional high contrast meta-structure waveguide that has slow light effect as well as phase tunability using p-n junction. The goal is to use such waveguide to design active optical devices such as high frequency modulators and tunable filters for analog RF-photonics or data communication applications. The Si ridge waveguide has a pair of high contrast grating wings adhered to the waveguide core in the center. Grating bars at two sides of the waveguide are doped P and N-type respectively, while a p-n junction region is formed in the middle of the waveguide core. By applying a voltage to bias the p-n junction, one can sweep the free carriers to change the effective index of the waveguide as well as the dispersion property of the grating. This metastructure Si waveguide is ideal in the design of high frequency optical modulators since the slow light effect can reduce the modulator waveguide length, increase the modulation efficiency as well as compensate other nonlinearity factors of the modulator for analog applications.\",\"PeriodicalId\":122702,\"journal\":{\"name\":\"SPIE OPTO\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE OPTO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2216273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2216273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们设计了一种新型的基于Si的一维高对比度元结构波导,该波导具有慢光效应以及使用p-n结的相位可调性。目标是使用这种波导来设计有源光学器件,如高频调制器和可调谐滤波器,用于模拟rf光子学或数据通信应用。硅脊波导具有一对高对比度的光栅翼,并粘附在波导核心的中心。波导两侧的光栅条分别掺杂P型和n型,在波导芯的中间形成P -n结区。通过对pn结施加偏置电压,可以扫描自由载流子,从而改变波导的有效折射率和光栅的色散特性。这种元结构硅波导是设计高频光调制器的理想材料,因为慢光效应可以减小调制器波导长度,提高调制效率,并补偿调制器在模拟应用中的其他非线性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active tunable high contrast meta-structure Si waveguide
In this work, we have designed a novel Si based 1-dimensional high contrast meta-structure waveguide that has slow light effect as well as phase tunability using p-n junction. The goal is to use such waveguide to design active optical devices such as high frequency modulators and tunable filters for analog RF-photonics or data communication applications. The Si ridge waveguide has a pair of high contrast grating wings adhered to the waveguide core in the center. Grating bars at two sides of the waveguide are doped P and N-type respectively, while a p-n junction region is formed in the middle of the waveguide core. By applying a voltage to bias the p-n junction, one can sweep the free carriers to change the effective index of the waveguide as well as the dispersion property of the grating. This metastructure Si waveguide is ideal in the design of high frequency optical modulators since the slow light effect can reduce the modulator waveguide length, increase the modulation efficiency as well as compensate other nonlinearity factors of the modulator for analog applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信