基于SDE和图论的标记多伯努利滤波器群目标跟踪

Li Li, Qinchen Wu, Bin Yan, Shaoming Wei, Jun Wang
{"title":"基于SDE和图论的标记多伯努利滤波器群目标跟踪","authors":"Li Li, Qinchen Wu, Bin Yan, Shaoming Wei, Jun Wang","doi":"10.23919/fusion49465.2021.9626976","DOIUrl":null,"url":null,"abstract":"Multi-target tracking is an extremely challenging task when targets move in the formation of groups and interact with each other. Group target tracking has to deal with this problem in contrast to independently moving targets as assumed in most multi-target tracking algorithms. A feasible approach for group target tracking is to estimate the group structure and modify the motion model in the prediction step of multi-target tracker according to the group structure. In this paper, we propose an ad hoc labeled multi-Bernoulli (LMB) filter for tracking group target with interaction, which use stochastic differential equation to model the joint motion of group targets and estimate group structure by using graph theory. Simulation results show that the proposed algorithm can estimate the target state more accurately than the traditional method without group motion modification.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"390 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Labeled Multi-Bernoulli Filter based Group Target Tracking Using SDE and Graph Theory\",\"authors\":\"Li Li, Qinchen Wu, Bin Yan, Shaoming Wei, Jun Wang\",\"doi\":\"10.23919/fusion49465.2021.9626976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target tracking is an extremely challenging task when targets move in the formation of groups and interact with each other. Group target tracking has to deal with this problem in contrast to independently moving targets as assumed in most multi-target tracking algorithms. A feasible approach for group target tracking is to estimate the group structure and modify the motion model in the prediction step of multi-target tracker according to the group structure. In this paper, we propose an ad hoc labeled multi-Bernoulli (LMB) filter for tracking group target with interaction, which use stochastic differential equation to model the joint motion of group targets and estimate group structure by using graph theory. Simulation results show that the proposed algorithm can estimate the target state more accurately than the traditional method without group motion modification.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":\"390 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9626976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多目标跟踪是一项极具挑战性的任务,因为目标以群体形式运动并且相互影响。与大多数多目标跟踪算法所假定的独立运动目标不同,群目标跟踪必须处理这一问题。一种可行的多目标跟踪方法是对群结构进行估计,并根据群结构对多目标跟踪器预测步骤中的运动模型进行修正。本文提出了一种特殊的标记多伯努利(LMB)滤波器,用于有相互作用的群体目标跟踪,该滤波器利用随机微分方程对群体目标的联合运动建模,并利用图论估计群体结构。仿真结果表明,在不进行群运动修正的情况下,该算法比传统方法能更准确地估计目标状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Labeled Multi-Bernoulli Filter based Group Target Tracking Using SDE and Graph Theory
Multi-target tracking is an extremely challenging task when targets move in the formation of groups and interact with each other. Group target tracking has to deal with this problem in contrast to independently moving targets as assumed in most multi-target tracking algorithms. A feasible approach for group target tracking is to estimate the group structure and modify the motion model in the prediction step of multi-target tracker according to the group structure. In this paper, we propose an ad hoc labeled multi-Bernoulli (LMB) filter for tracking group target with interaction, which use stochastic differential equation to model the joint motion of group targets and estimate group structure by using graph theory. Simulation results show that the proposed algorithm can estimate the target state more accurately than the traditional method without group motion modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信