感知器非线性盲源分离用于特征提取和图像分类

M. R. Boussema, M. Naceur, H. Elmannai
{"title":"感知器非线性盲源分离用于特征提取和图像分类","authors":"M. R. Boussema, M. Naceur, H. Elmannai","doi":"10.1109/IPTA.2012.6469537","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to classify remotely sensed images for land characterisation. The major goal is approaching the natural nonlinear mixture for band observation and then dimension reduction by supervised classification. After that, an unsupervised method combining feature extraction and SVM in investigating to discriminate the land cover for SPOT 4 satellite image. In this technique, training data base are wavelet features that are extracted from a subset of sources.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perceptron nonlinear blind source separation for feature extraction and image classification\",\"authors\":\"M. R. Boussema, M. Naceur, H. Elmannai\",\"doi\":\"10.1109/IPTA.2012.6469537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we aim to classify remotely sensed images for land characterisation. The major goal is approaching the natural nonlinear mixture for band observation and then dimension reduction by supervised classification. After that, an unsupervised method combining feature extraction and SVM in investigating to discriminate the land cover for SPOT 4 satellite image. In this technique, training data base are wavelet features that are extracted from a subset of sources.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们的目标是分类遥感图像的土地特征。主要目标是接近自然的非线性混合波段观测,然后通过监督分类进行降维。在此基础上,提出了一种结合特征提取和支持向量机的无监督调查方法,对spot4卫星影像进行土地覆盖判别。在该技术中,训练数据库是从源的子集中提取的小波特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perceptron nonlinear blind source separation for feature extraction and image classification
In this paper, we aim to classify remotely sensed images for land characterisation. The major goal is approaching the natural nonlinear mixture for band observation and then dimension reduction by supervised classification. After that, an unsupervised method combining feature extraction and SVM in investigating to discriminate the land cover for SPOT 4 satellite image. In this technique, training data base are wavelet features that are extracted from a subset of sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信