{"title":"从物理模型推导出仿射的Takagi-Sugeno模型:评估标准和建模程序","authors":"A. Kroll, Axel Dürrbaum","doi":"10.1109/CICA.2011.5945746","DOIUrl":null,"url":null,"abstract":"Models are commonly derived and their performance is assessed wrt. minimal prediction error on a closed data set. However, if no perfect model can be used, the degrees of freedom in modeling should be used to adjust the model to application-specific metrics. For model-based controller design, control-oriented performance metrics (e.g. performance wrt. to control-critical properties) are important, but not primarily prediction (i.e. prognosis- and simulation-oriented) ones. This motivates the derivation of control-specific models. The contribution introduces structured and quantitative measures on “model suitability for control” for the class of affine dynamic Takagi-Sugeno models. A method is suggested that derives control-specific dynamic models from a physical model given as a set of nonlinear differential equations. Within a case study, the proposed method demonstrates its significance: Using control-specific models improves control performance metrics such as set-point tracking quality, stability region and energy efficiency. Nonlinear dynamic modeling, Takagi-Sugeno systems, modeling for control","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On control-specific derivation of affine Takagi-Sugeno models from physical models: Assessment criteria and modeling procedure\",\"authors\":\"A. Kroll, Axel Dürrbaum\",\"doi\":\"10.1109/CICA.2011.5945746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models are commonly derived and their performance is assessed wrt. minimal prediction error on a closed data set. However, if no perfect model can be used, the degrees of freedom in modeling should be used to adjust the model to application-specific metrics. For model-based controller design, control-oriented performance metrics (e.g. performance wrt. to control-critical properties) are important, but not primarily prediction (i.e. prognosis- and simulation-oriented) ones. This motivates the derivation of control-specific models. The contribution introduces structured and quantitative measures on “model suitability for control” for the class of affine dynamic Takagi-Sugeno models. A method is suggested that derives control-specific dynamic models from a physical model given as a set of nonlinear differential equations. Within a case study, the proposed method demonstrates its significance: Using control-specific models improves control performance metrics such as set-point tracking quality, stability region and energy efficiency. Nonlinear dynamic modeling, Takagi-Sugeno systems, modeling for control\",\"PeriodicalId\":420555,\"journal\":{\"name\":\"Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2011.5945746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On control-specific derivation of affine Takagi-Sugeno models from physical models: Assessment criteria and modeling procedure
Models are commonly derived and their performance is assessed wrt. minimal prediction error on a closed data set. However, if no perfect model can be used, the degrees of freedom in modeling should be used to adjust the model to application-specific metrics. For model-based controller design, control-oriented performance metrics (e.g. performance wrt. to control-critical properties) are important, but not primarily prediction (i.e. prognosis- and simulation-oriented) ones. This motivates the derivation of control-specific models. The contribution introduces structured and quantitative measures on “model suitability for control” for the class of affine dynamic Takagi-Sugeno models. A method is suggested that derives control-specific dynamic models from a physical model given as a set of nonlinear differential equations. Within a case study, the proposed method demonstrates its significance: Using control-specific models improves control performance metrics such as set-point tracking quality, stability region and energy efficiency. Nonlinear dynamic modeling, Takagi-Sugeno systems, modeling for control