用支持向量机逼近非线性模型预测控制器

Tony Dang, Frederik Debrouwere, E. Hostens
{"title":"用支持向量机逼近非线性模型预测控制器","authors":"Tony Dang, Frederik Debrouwere, E. Hostens","doi":"10.1109/anzcc53563.2021.9628293","DOIUrl":null,"url":null,"abstract":"Typically, Model Predictive Control (MPC) for highly dynamic systems poses challenges to the computation power needed to optimize the control in real-time. In this paper, we present an explainable methodology to approximate MPCs with low input penalization as a closed form expression, using learning by demonstration. Classical approaches, e.g. using neural networks, result in over-complicated controllers and require huge datasets. In this paper, the prior knowledge on the typical bang-bang behavior of low-input penalized MPC will be exploited to approximate the MPC-law by only sparsely sampling the state space. This is achieved by identifying the switching surface of the sampled MPC-solution using Support Vector Machines (SVMs). The result is a light-weight, interpretable, easy to tune, explicit control law suitable for real-time applications. The methodology is validated in simulation on a benchmark problem from the field of process control (stirred tank reactor), and on a physical set-up of a highly dynamic motion control problem (parallel SCARA). The results, both in simulation and experimentally, show that strong approximation can already be obtained by using very light-weight controllers which, for the SCARA, were able to run on a frequency of at least 2kHz on the experimental setup.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximating Nonlinear Model Predictive Controllers using Support Vector Machines\",\"authors\":\"Tony Dang, Frederik Debrouwere, E. Hostens\",\"doi\":\"10.1109/anzcc53563.2021.9628293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, Model Predictive Control (MPC) for highly dynamic systems poses challenges to the computation power needed to optimize the control in real-time. In this paper, we present an explainable methodology to approximate MPCs with low input penalization as a closed form expression, using learning by demonstration. Classical approaches, e.g. using neural networks, result in over-complicated controllers and require huge datasets. In this paper, the prior knowledge on the typical bang-bang behavior of low-input penalized MPC will be exploited to approximate the MPC-law by only sparsely sampling the state space. This is achieved by identifying the switching surface of the sampled MPC-solution using Support Vector Machines (SVMs). The result is a light-weight, interpretable, easy to tune, explicit control law suitable for real-time applications. The methodology is validated in simulation on a benchmark problem from the field of process control (stirred tank reactor), and on a physical set-up of a highly dynamic motion control problem (parallel SCARA). The results, both in simulation and experimentally, show that strong approximation can already be obtained by using very light-weight controllers which, for the SCARA, were able to run on a frequency of at least 2kHz on the experimental setup.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/anzcc53563.2021.9628293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常,高动态系统的模型预测控制(MPC)对实时优化控制所需的计算能力提出了挑战。在本文中,我们提出了一种可解释的方法,将具有低输入惩罚的mpc近似为封闭形式表达式,使用示范学习。经典的方法,例如使用神经网络,会导致过于复杂的控制器,并且需要庞大的数据集。本文将利用低输入惩罚MPC的典型bang-bang行为的先验知识,通过对状态空间进行稀疏采样来近似MPC律。这是通过使用支持向量机(svm)识别采样mpc解决方案的开关表面来实现的。结果是一个轻量级的、可解释的、易于调整的、适合实时应用的显式控制律。该方法在过程控制领域的一个基准问题(搅拌槽式反应器)的仿真中得到了验证,并在一个高动态运动控制问题(并行SCARA)的物理设置上得到了验证。仿真和实验结果都表明,通过使用非常轻的控制器已经可以获得很强的近似,对于SCARA来说,在实验装置上能够以至少2kHz的频率运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Nonlinear Model Predictive Controllers using Support Vector Machines
Typically, Model Predictive Control (MPC) for highly dynamic systems poses challenges to the computation power needed to optimize the control in real-time. In this paper, we present an explainable methodology to approximate MPCs with low input penalization as a closed form expression, using learning by demonstration. Classical approaches, e.g. using neural networks, result in over-complicated controllers and require huge datasets. In this paper, the prior knowledge on the typical bang-bang behavior of low-input penalized MPC will be exploited to approximate the MPC-law by only sparsely sampling the state space. This is achieved by identifying the switching surface of the sampled MPC-solution using Support Vector Machines (SVMs). The result is a light-weight, interpretable, easy to tune, explicit control law suitable for real-time applications. The methodology is validated in simulation on a benchmark problem from the field of process control (stirred tank reactor), and on a physical set-up of a highly dynamic motion control problem (parallel SCARA). The results, both in simulation and experimentally, show that strong approximation can already be obtained by using very light-weight controllers which, for the SCARA, were able to run on a frequency of at least 2kHz on the experimental setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信