Shengsheng Huang, Jie Huang, J. Dai, T. Xie, Bo Huang
{"title":"HiBench基准测试套件:基于mapreduce的数据分析的特征","authors":"Shengsheng Huang, Jie Huang, J. Dai, T. Xie, Bo Huang","doi":"10.1109/ICDEW.2010.5452747","DOIUrl":null,"url":null,"abstract":"The MapReduce model is becoming prominent for the large-scale data analysis in the cloud. In this paper, we present the benchmarking, evaluation and characterization of Hadoop, an open-source implementation of MapReduce. We first introduce HiBench, a new benchmark suite for Hadoop. It consists of a set of Hadoop programs, including both synthetic micro-benchmarks and real-world Hadoop applications. We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"748","resultStr":"{\"title\":\"The HiBench benchmark suite: Characterization of the MapReduce-based data analysis\",\"authors\":\"Shengsheng Huang, Jie Huang, J. Dai, T. Xie, Bo Huang\",\"doi\":\"10.1109/ICDEW.2010.5452747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MapReduce model is becoming prominent for the large-scale data analysis in the cloud. In this paper, we present the benchmarking, evaluation and characterization of Hadoop, an open-source implementation of MapReduce. We first introduce HiBench, a new benchmark suite for Hadoop. It consists of a set of Hadoop programs, including both synthetic micro-benchmarks and real-world Hadoop applications. We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.\",\"PeriodicalId\":442345,\"journal\":{\"name\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"748\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2010.5452747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The HiBench benchmark suite: Characterization of the MapReduce-based data analysis
The MapReduce model is becoming prominent for the large-scale data analysis in the cloud. In this paper, we present the benchmarking, evaluation and characterization of Hadoop, an open-source implementation of MapReduce. We first introduce HiBench, a new benchmark suite for Hadoop. It consists of a set of Hadoop programs, including both synthetic micro-benchmarks and real-world Hadoop applications. We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.