网络中的信息传播:控制、博弈和平衡

A. Khanafer, T. Başar
{"title":"网络中的信息传播:控制、博弈和平衡","authors":"A. Khanafer, T. Başar","doi":"10.1109/ITA.2014.6804244","DOIUrl":null,"url":null,"abstract":"We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Information spread in networks: Control, games, and equilibria\",\"authors\":\"A. Khanafer, T. Başar\",\"doi\":\"10.1109/ITA.2014.6804244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们设计了干预方案来控制多智能体系统中的信息传播。我们考虑了两种信息传播模型:线性分布平均模型和病毒传播动力学模型。利用微分博弈的框架,我们设计了一个动态优化框架,该框架产生了对抗干预的鲁棒策略。对于线性动力学,我们证明了最优策略与势能理论有关。在病毒传播的情况下,我们证明了最优控制器具有多个开关。此外,我们建立了博弈论与网络流行病的动态描述之间的联系,这为感染网络中的决策提供了见解。最后,我们提出了使用有限数量的控件的网络可控性的初始构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information spread in networks: Control, games, and equilibria
We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信