{"title":"网络中的信息传播:控制、博弈和平衡","authors":"A. Khanafer, T. Başar","doi":"10.1109/ITA.2014.6804244","DOIUrl":null,"url":null,"abstract":"We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Information spread in networks: Control, games, and equilibria\",\"authors\":\"A. Khanafer, T. Başar\",\"doi\":\"10.1109/ITA.2014.6804244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Information spread in networks: Control, games, and equilibria
We design intervention schemes to control information spread in multi-agent systems. We consider two information spread models: linear distributed averaging and virus spread dynamics. Using the framework of differential games, we design a dynamical optimization framework that produces strategies that are robust to adversarial intervention. For linear dynamics, we show that optimal strategies make connection to potential-theory. In the virus spread case, we show that optimal controllers exhibit multiple switches. Moreover, we establish a connection between game theory and dynamical descriptions of network epidemics, which provides insights into decision making in infected networks. Finally, we present initial building blocks for network controllability using a limited number of controls.