神经元同伦回归量

R. Rodrigo, D. Patiño, G. Schweickardt
{"title":"神经元同伦回归量","authors":"R. Rodrigo, D. Patiño, G. Schweickardt","doi":"10.1109/RPIC53795.2021.9648481","DOIUrl":null,"url":null,"abstract":"In this work, a neural model is proposed, which solves two limitations of artificial neural networks. The first refers to the ability to extrapolate outside the domain of the training data. The second arises when only a small sample is available for training. On the other hand, there is a need to characterize a complex system, and the dynamics of its components is partially known. The proposed model is based on the construction of a regressor from a feasible space, using Homotopy Analysis. In this way, a functional neural network is obtained.","PeriodicalId":299649,"journal":{"name":"2021 XIX Workshop on Information Processing and Control (RPIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal Homotopy Regressors\",\"authors\":\"R. Rodrigo, D. Patiño, G. Schweickardt\",\"doi\":\"10.1109/RPIC53795.2021.9648481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a neural model is proposed, which solves two limitations of artificial neural networks. The first refers to the ability to extrapolate outside the domain of the training data. The second arises when only a small sample is available for training. On the other hand, there is a need to characterize a complex system, and the dynamics of its components is partially known. The proposed model is based on the construction of a regressor from a feasible space, using Homotopy Analysis. In this way, a functional neural network is obtained.\",\"PeriodicalId\":299649,\"journal\":{\"name\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RPIC53795.2021.9648481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XIX Workshop on Information Processing and Control (RPIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RPIC53795.2021.9648481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种神经网络模型,解决了人工神经网络的两个局限性。第一个是指在训练数据领域之外进行外推的能力。第二个问题出现在只有一个小样本可用于训练的情况下。另一方面,有必要表征一个复杂的系统,其组成部分的动力学是部分已知的。该模型采用同伦分析方法,从可行空间构造回归量。这样就得到了一个泛函神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuronal Homotopy Regressors
In this work, a neural model is proposed, which solves two limitations of artificial neural networks. The first refers to the ability to extrapolate outside the domain of the training data. The second arises when only a small sample is available for training. On the other hand, there is a need to characterize a complex system, and the dynamics of its components is partially known. The proposed model is based on the construction of a regressor from a feasible space, using Homotopy Analysis. In this way, a functional neural network is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信