玻碳材料的压痕滞后

N. Iwashita, J. Field, M. Swain
{"title":"玻碳材料的压痕滞后","authors":"N. Iwashita, J. Field, M. Swain","doi":"10.1080/01418610208235699","DOIUrl":null,"url":null,"abstract":"Abstract Indentation hysteresis during both pointed and spherical indentation is a common feature of the observed force-displacement response of glassy carbon materials. Field and Swain proposed a method of analysis of this behaviour with spherical indenters in the form of classic indentation stress-strain curves. They also proposed that the response resulted from limited reversible slip of the graphite-like nanocrystalline structure of these so-called glassy carbon materials. The present work extends the previous study by investigating the influence of the nanocrystalline grain size and the hysteretic response with indenters of sharper apical angle. It is found that the extent of the hysteresis is dependent upon the grain size as is the contact stress for the initiation of yielding. The critical strain for the onset of non-recoverable hysteretic response is clearly identified with sharper-apical-angle indenters. This irreversibility of the hysteretic response is discussed in terms of an analysis proposed by Brown whereby the critical limit for the strain for reversible hysteretic behaviour was related to the percolation limit for plastic shear strain sites within a material.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Indentation hysteresis of glassy carbon materials\",\"authors\":\"N. Iwashita, J. Field, M. Swain\",\"doi\":\"10.1080/01418610208235699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Indentation hysteresis during both pointed and spherical indentation is a common feature of the observed force-displacement response of glassy carbon materials. Field and Swain proposed a method of analysis of this behaviour with spherical indenters in the form of classic indentation stress-strain curves. They also proposed that the response resulted from limited reversible slip of the graphite-like nanocrystalline structure of these so-called glassy carbon materials. The present work extends the previous study by investigating the influence of the nanocrystalline grain size and the hysteretic response with indenters of sharper apical angle. It is found that the extent of the hysteresis is dependent upon the grain size as is the contact stress for the initiation of yielding. The critical strain for the onset of non-recoverable hysteretic response is clearly identified with sharper-apical-angle indenters. This irreversibility of the hysteretic response is discussed in terms of an analysis proposed by Brown whereby the critical limit for the strain for reversible hysteretic behaviour was related to the percolation limit for plastic shear strain sites within a material.\",\"PeriodicalId\":114492,\"journal\":{\"name\":\"Philosophical Magazine A\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01418610208235699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208235699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在观察到的玻璃碳材料的力-位移响应中,尖压痕和球形压痕都存在压痕滞后现象。Field和Swain提出了用经典压痕应力-应变曲线形式的球形压痕分析这种行为的方法。他们还提出,这种反应是由这些所谓的玻璃碳材料的石墨状纳米晶体结构的有限可逆滑移引起的。本文在前人研究的基础上,进一步研究了纳米晶晶粒尺寸和尖角更大的压头对磁滞响应的影响。研究发现,迟滞的程度取决于晶粒尺寸和屈服起始的接触应力。不可恢复的迟滞响应的临界应变的发作是清楚地确定了尖锐的尖角压头。这种迟滞响应的不可逆性是根据Brown提出的分析来讨论的,其中可逆迟滞行为的应变的临界极限与材料内塑性剪切应变部位的渗透极限有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indentation hysteresis of glassy carbon materials
Abstract Indentation hysteresis during both pointed and spherical indentation is a common feature of the observed force-displacement response of glassy carbon materials. Field and Swain proposed a method of analysis of this behaviour with spherical indenters in the form of classic indentation stress-strain curves. They also proposed that the response resulted from limited reversible slip of the graphite-like nanocrystalline structure of these so-called glassy carbon materials. The present work extends the previous study by investigating the influence of the nanocrystalline grain size and the hysteretic response with indenters of sharper apical angle. It is found that the extent of the hysteresis is dependent upon the grain size as is the contact stress for the initiation of yielding. The critical strain for the onset of non-recoverable hysteretic response is clearly identified with sharper-apical-angle indenters. This irreversibility of the hysteretic response is discussed in terms of an analysis proposed by Brown whereby the critical limit for the strain for reversible hysteretic behaviour was related to the percolation limit for plastic shear strain sites within a material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信