$e$的排列与连分数

P. Lynch
{"title":"$e$的排列与连分数","authors":"P. Lynch","doi":"10.33232/bims.0087.45.50","DOIUrl":null,"url":null,"abstract":"Several continued fraction expansions for $e$ have been produced by an automated conjecture generator (ACG) called \\emph{The Ramanujan Machine}. Some of these were already known, some have recently been proved and some remain unproven. While an ACG can produce interesting putative results, it gives very limited insight into their significance. In this paper, we derive an elegant continued fraction expansion, equivalent to a result from the Ramanujan Machine, using the sequence of ratios of factorials to subfactorials or derangement numbers.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derangements and Continued Fractions for $e$\",\"authors\":\"P. Lynch\",\"doi\":\"10.33232/bims.0087.45.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several continued fraction expansions for $e$ have been produced by an automated conjecture generator (ACG) called \\\\emph{The Ramanujan Machine}. Some of these were already known, some have recently been proved and some remain unproven. While an ACG can produce interesting putative results, it gives very limited insight into their significance. In this paper, we derive an elegant continued fraction expansion, equivalent to a result from the Ramanujan Machine, using the sequence of ratios of factorials to subfactorials or derangement numbers.\",\"PeriodicalId\":103198,\"journal\":{\"name\":\"Irish Mathematical Society Bulletin\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irish Mathematical Society Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33232/bims.0087.45.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0087.45.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个叫做\emph{拉马努金机器}的自动猜想发生器(ACG)已经产生了$e$的几个连分数展开式。其中一些已经为人所知,一些最近才得到证实,还有一些尚未得到证实。虽然ACG可以产生有趣的假设结果,但它对其重要性的了解非常有限。在本文中,我们利用阶乘与子阶乘或无序数的比值序列,导出了一个优雅的连分数展开式,它等价于拉马努金机的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derangements and Continued Fractions for $e$
Several continued fraction expansions for $e$ have been produced by an automated conjecture generator (ACG) called \emph{The Ramanujan Machine}. Some of these were already known, some have recently been proved and some remain unproven. While an ACG can produce interesting putative results, it gives very limited insight into their significance. In this paper, we derive an elegant continued fraction expansion, equivalent to a result from the Ramanujan Machine, using the sequence of ratios of factorials to subfactorials or derangement numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信