基于快速梯度法和增广拉格朗日乘子的线性定常系统的快速预测控制

M. Kögel, R. Findeisen
{"title":"基于快速梯度法和增广拉格朗日乘子的线性定常系统的快速预测控制","authors":"M. Kögel, R. Findeisen","doi":"10.1109/CCA.2011.6044410","DOIUrl":null,"url":null,"abstract":"We present an algorithm based on the fast gradient method and augmented Lagrange multipliers for model predictive control of linear, discrete-time, time-invariant, systems with constraints. In particular, the algorithm solves the underlying quadratic program in the so-called condensed form and takes advantage of the problem structure. At the end, we illustrate the performance of the algorithm, which is competitive with tailored interior-point methods, by an example.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Fast predictive control of linear, time-invariant systems using an algorithm based on the fast gradient method and augmented Lagrange multipliers\",\"authors\":\"M. Kögel, R. Findeisen\",\"doi\":\"10.1109/CCA.2011.6044410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm based on the fast gradient method and augmented Lagrange multipliers for model predictive control of linear, discrete-time, time-invariant, systems with constraints. In particular, the algorithm solves the underlying quadratic program in the so-called condensed form and takes advantage of the problem structure. At the end, we illustrate the performance of the algorithm, which is competitive with tailored interior-point methods, by an example.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种基于快速梯度法和增广拉格朗日乘子的带约束线性、离散、定常系统模型预测控制算法。特别是,该算法以所谓的压缩形式求解底层的二次规划,并利用了问题结构。最后,通过一个算例说明了该算法的性能,该算法与定制内点方法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast predictive control of linear, time-invariant systems using an algorithm based on the fast gradient method and augmented Lagrange multipliers
We present an algorithm based on the fast gradient method and augmented Lagrange multipliers for model predictive control of linear, discrete-time, time-invariant, systems with constraints. In particular, the algorithm solves the underlying quadratic program in the so-called condensed form and takes advantage of the problem structure. At the end, we illustrate the performance of the algorithm, which is competitive with tailored interior-point methods, by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信