基于Karhunen - Loeve变换实现的综合判别函数的声纳图像识别

V. Riasati, Z. Hui, S. Sepulveda, A. Ellis
{"title":"基于Karhunen - Loeve变换实现的综合判别函数的声纳图像识别","authors":"V. Riasati, Z. Hui, S. Sepulveda, A. Ellis","doi":"10.1109/OCEANS.2004.1405542","DOIUrl":null,"url":null,"abstract":"This paper discusses modified synthetic discriminant functions (SDF) using a Karhunen Loeve transform (KLT) used for improved sonar image recognition. The SDF filter synthesis involves using the whole image which in turn creates redundancies in the distinguishing features. A number of different schemes have been used to try to reduce the data in SDF filters in order to make them more practical, efficient, and reliable. The KLT is one method to reduce the redundancies in a set of training images to create a new data matrix. This data matrix has a new coordinate system in which the axes of the system are in the direction of the eigenvectors of the covariance matrix of the training set. With the realigned data found in the data matrix, the principle component images can be extracted. Principle component images are comprised of the variations of the original training images. This minimizes the training data to the necessary information that is needed for image recognition. The principle component images then become the training set to be used in the SDF filter. Because the KLT allows for the reduction in redundancies by examining only the variations of this new training set, it will increase the correlation found in this implementation of the SDF filter.","PeriodicalId":390971,"journal":{"name":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonar image recognition using synthetic discriminant functions implemented with the Karhunen Loeve transform\",\"authors\":\"V. Riasati, Z. Hui, S. Sepulveda, A. Ellis\",\"doi\":\"10.1109/OCEANS.2004.1405542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses modified synthetic discriminant functions (SDF) using a Karhunen Loeve transform (KLT) used for improved sonar image recognition. The SDF filter synthesis involves using the whole image which in turn creates redundancies in the distinguishing features. A number of different schemes have been used to try to reduce the data in SDF filters in order to make them more practical, efficient, and reliable. The KLT is one method to reduce the redundancies in a set of training images to create a new data matrix. This data matrix has a new coordinate system in which the axes of the system are in the direction of the eigenvectors of the covariance matrix of the training set. With the realigned data found in the data matrix, the principle component images can be extracted. Principle component images are comprised of the variations of the original training images. This minimizes the training data to the necessary information that is needed for image recognition. The principle component images then become the training set to be used in the SDF filter. Because the KLT allows for the reduction in redundancies by examining only the variations of this new training set, it will increase the correlation found in this implementation of the SDF filter.\",\"PeriodicalId\":390971,\"journal\":{\"name\":\"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2004.1405542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2004.1405542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了利用Karhunen - Loeve变换(KLT)改进的综合判别函数(SDF)用于改进声纳图像识别。SDF滤波器合成涉及使用整个图像,这反过来又在区分特征中产生冗余。为了使SDF过滤器更加实用、高效和可靠,已经使用了许多不同的方案来尝试减少SDF过滤器中的数据。KLT是一种减少一组训练图像中的冗余以创建新数据矩阵的方法。这个数据矩阵有一个新的坐标系,在这个坐标系中,系统的轴线与训练集协方差矩阵的特征向量方向一致。利用在数据矩阵中找到的重新排列的数据,提取主成分图像。主成分图像是由原始训练图像的变体组成的。这将训练数据最小化到图像识别所需的必要信息。然后,主成分图像成为SDF滤波器中使用的训练集。因为KLT允许通过只检查这个新训练集的变化来减少冗余,所以它将增加在SDF过滤器的实现中发现的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonar image recognition using synthetic discriminant functions implemented with the Karhunen Loeve transform
This paper discusses modified synthetic discriminant functions (SDF) using a Karhunen Loeve transform (KLT) used for improved sonar image recognition. The SDF filter synthesis involves using the whole image which in turn creates redundancies in the distinguishing features. A number of different schemes have been used to try to reduce the data in SDF filters in order to make them more practical, efficient, and reliable. The KLT is one method to reduce the redundancies in a set of training images to create a new data matrix. This data matrix has a new coordinate system in which the axes of the system are in the direction of the eigenvectors of the covariance matrix of the training set. With the realigned data found in the data matrix, the principle component images can be extracted. Principle component images are comprised of the variations of the original training images. This minimizes the training data to the necessary information that is needed for image recognition. The principle component images then become the training set to be used in the SDF filter. Because the KLT allows for the reduction in redundancies by examining only the variations of this new training set, it will increase the correlation found in this implementation of the SDF filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信