基于QOS参数化的社交媒体评论情感分析

Jaspreet Singh, Gurvinder Singh
{"title":"基于QOS参数化的社交媒体评论情感分析","authors":"Jaspreet Singh, Gurvinder Singh","doi":"10.1109/ICSCCC.2018.8703351","DOIUrl":null,"url":null,"abstract":"The exponential growth of content on social media raised the need for evaluation of user reviews to recognize the underlying sentiments. The traditional Natural Language Processing (NLP) techniques necessitate novel Quality of Service (QoS) parameters from the aspect based reviews. The classical methods espouse QoS parameters acquired from feedback system where, a predefined range of questions affects the authenticity of sentiments. This paper proposes the method of evaluation that assimilates aspect related QoS parameters obtained from user reviews. The pre-processing phase of our proposed model involves steps like review cleaning followed by word tokenization, stemming, and stop-word removal. Pre-processed set of word tokens go through Parts Of Speech (POS) tagging using Stanford POS tagger. Post-processing phase leverages standard NLP and Machine Learning (ML) techniques to identify the prominent QoS features. However, the task of sentiment classification exploits Natural Language Toolkit (NLTK) but, the impact of relevant terms in a review is learned using Logistic Regression (LR). The efficacy of proposed model is evaluated using a real world dataset and the results confirm the effectiveness of introduced QoS features.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Analysis of Social Media Reviews using QOS Parameterization\",\"authors\":\"Jaspreet Singh, Gurvinder Singh\",\"doi\":\"10.1109/ICSCCC.2018.8703351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth of content on social media raised the need for evaluation of user reviews to recognize the underlying sentiments. The traditional Natural Language Processing (NLP) techniques necessitate novel Quality of Service (QoS) parameters from the aspect based reviews. The classical methods espouse QoS parameters acquired from feedback system where, a predefined range of questions affects the authenticity of sentiments. This paper proposes the method of evaluation that assimilates aspect related QoS parameters obtained from user reviews. The pre-processing phase of our proposed model involves steps like review cleaning followed by word tokenization, stemming, and stop-word removal. Pre-processed set of word tokens go through Parts Of Speech (POS) tagging using Stanford POS tagger. Post-processing phase leverages standard NLP and Machine Learning (ML) techniques to identify the prominent QoS features. However, the task of sentiment classification exploits Natural Language Toolkit (NLTK) but, the impact of relevant terms in a review is learned using Logistic Regression (LR). The efficacy of proposed model is evaluated using a real world dataset and the results confirm the effectiveness of introduced QoS features.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交媒体上的内容呈指数级增长,因此有必要对用户评论进行评估,以识别潜在的情绪。传统的自然语言处理(NLP)技术需要基于方面评价的服务质量(QoS)参数。经典方法支持从反馈系统获得的QoS参数,其中预定义的问题范围影响情感的真实性。本文提出了一种吸收用户评价中与方面相关的QoS参数的评价方法。我们提出的模型的预处理阶段包括以下步骤:审查清理,然后是单词标记化、词干提取和停止词删除。使用斯坦福词性标注器进行词性标注的预处理词标记集。后处理阶段利用标准的NLP和机器学习(ML)技术来识别突出的QoS特征。然而,情感分类的任务利用自然语言工具包(NLTK),但评论中相关术语的影响是使用逻辑回归(LR)学习的。使用真实数据集对所提出模型的有效性进行了评估,结果证实了所引入的QoS特征的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Social Media Reviews using QOS Parameterization
The exponential growth of content on social media raised the need for evaluation of user reviews to recognize the underlying sentiments. The traditional Natural Language Processing (NLP) techniques necessitate novel Quality of Service (QoS) parameters from the aspect based reviews. The classical methods espouse QoS parameters acquired from feedback system where, a predefined range of questions affects the authenticity of sentiments. This paper proposes the method of evaluation that assimilates aspect related QoS parameters obtained from user reviews. The pre-processing phase of our proposed model involves steps like review cleaning followed by word tokenization, stemming, and stop-word removal. Pre-processed set of word tokens go through Parts Of Speech (POS) tagging using Stanford POS tagger. Post-processing phase leverages standard NLP and Machine Learning (ML) techniques to identify the prominent QoS features. However, the task of sentiment classification exploits Natural Language Toolkit (NLTK) but, the impact of relevant terms in a review is learned using Logistic Regression (LR). The efficacy of proposed model is evaluated using a real world dataset and the results confirm the effectiveness of introduced QoS features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信