协同位置收集系统中的自适应游戏化:一个旅行行为检测的案例

María Dalponte Ayastuy, Diego Torres
{"title":"协同位置收集系统中的自适应游戏化:一个旅行行为检测的案例","authors":"María Dalponte Ayastuy, Diego Torres","doi":"10.24215/16666038.22.e05","DOIUrl":null,"url":null,"abstract":"Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering.  The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two  types of users’ behavioral patterns. ","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection\",\"authors\":\"María Dalponte Ayastuy, Diego Torres\",\"doi\":\"10.24215/16666038.22.e05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering.  The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two  types of users’ behavioral patterns. \",\"PeriodicalId\":188846,\"journal\":{\"name\":\"J. Comput. Sci. Technol.\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24215/16666038.22.e05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/16666038.22.e05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

协作位置收集系统(CLCS)是协作系统的一种特殊情况,其中用户社区协作收集与地理参考位置相关的数据。游戏化是一种将参与者召集到CLCS的策略。然而,由于不同用户的配置文件,它不能一概而论,所以它必须根据用户和游戏环境进行调整。在CLCS中适应游戏化的策略是根据玩家的时空行为来构建游戏挑战。这种类型的适应需要有一个用户旅行行为档案。特别是,本研究的重点是在CLCS背景下检测用户与时空活动相关的行为特征的第一步。具体来说,本文介绍了:(1)时空活动模式的检测策略;(2)基于(1)的用户时空行为描述模型;以及基于无监督聚类的用户行为模式检测策略。该方法在Foursquare数据集上进行了评估。结果显示了两种类型的行为原子和两种类型的用户行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering.  The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two  types of users’ behavioral patterns. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信