基于特定词汇的分类

J. Savoy, Olena Zubaryeva
{"title":"基于特定词汇的分类","authors":"J. Savoy, Olena Zubaryeva","doi":"10.1109/WI-IAT.2011.19","DOIUrl":null,"url":null,"abstract":"Assuming a binomial distribution for word occurrence, we propose computing a standardized Z score to define the specific vocabulary of a subset compared to that of the entire corpus. This approach is applied to weight terms characterizing a document (or a sample of texts). We then show how these Z score values can be used to derive an efficient categorization scheme. To evaluate this proposition we categorize speeches given by B. Obama as either electoral or presidential. The results tend to show that the suggested classification scheme performs better than a Support Vector Machine scheme, and a Naive Bayes classifier (10-fold cross validation).","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification Based on Specific Vocabulary\",\"authors\":\"J. Savoy, Olena Zubaryeva\",\"doi\":\"10.1109/WI-IAT.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming a binomial distribution for word occurrence, we propose computing a standardized Z score to define the specific vocabulary of a subset compared to that of the entire corpus. This approach is applied to weight terms characterizing a document (or a sample of texts). We then show how these Z score values can be used to derive an efficient categorization scheme. To evaluate this proposition we categorize speeches given by B. Obama as either electoral or presidential. The results tend to show that the suggested classification scheme performs better than a Support Vector Machine scheme, and a Naive Bayes classifier (10-fold cross validation).\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

假设单词出现的二项分布,我们建议计算一个标准化的Z分数来定义一个子集与整个语料库的特定词汇。这种方法应用于描述文档(或文本样本)的权重项。然后,我们将展示如何使用这些Z分数值来推导有效的分类方案。为了评价这一命题,我们将B.奥巴马的演讲分为选举演讲和总统演讲。结果表明,建议的分类方案优于支持向量机方案和朴素贝叶斯分类器(10倍交叉验证)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification Based on Specific Vocabulary
Assuming a binomial distribution for word occurrence, we propose computing a standardized Z score to define the specific vocabulary of a subset compared to that of the entire corpus. This approach is applied to weight terms characterizing a document (or a sample of texts). We then show how these Z score values can be used to derive an efficient categorization scheme. To evaluate this proposition we categorize speeches given by B. Obama as either electoral or presidential. The results tend to show that the suggested classification scheme performs better than a Support Vector Machine scheme, and a Naive Bayes classifier (10-fold cross validation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信